
dypgen User’s Manual

Emmanuel Onzon

June 19, 2012

Overview

dypgen is a parser generator for Objective Caml. To use it you need to learn the BNF syntax for
grammars which is briefly explained in section 1.2. Its main features are:

• This is a GLR parser. This means it can handle ambiguous grammars and outputs the list
of all possible parse trees. Even for non ambiguous grammars, GLR parsing allows to define
the grammar in a more natural way. It is possible to extract a definition suitable for the
documentation directly from the parser source file.

• Ambiguities can be removed by introducing priorities and relations between them. This gives
a very natural way to express a grammar (the examples in this documentation illustrate this).

• Grammars are self-extensible, i.e. an action can add new rules to the current grammar.
Moreover, the modifications can be local. The new grammar is valid only for a well delimited
section of the parsed input.

• dypgen provides management of local and global immutable data. The user actions can
access it and return it modified. These mechanisms adress the problem posed by global
mutable data with GLR parsing and let the user control the scope of the data.

Modifications of local data are preserved when traveling from right to left in a rule or when
going down in the parse tree. Modifications of global data are preserved across the complete
traversal of the parse tree.

These data may be used for instance to do type-checking at parsing time in an elegant
and acceptable way. The local data may contain the environment that associates a type to
each variable while the global data would contain the substitution over types that is usually
produced by unification.

• Pattern matching for symbols in right-hand sides of rules is possible. In particular this allows
guarded reductions and to bind names to the arguments of actions.

• dypgen allows early actions, that are semantic actions performed before the end of a rule.

• It is possible to use dypgen as the lexer generator too. In this case regular expressions that
match characters strings are allowed in the right-hand side of grammar rules and it is possible
to extend the lexer by introducing such rules.

• The operators *, + and ? of regular expressions are available for non terminals and nested
rules too.

1

Contents

1 Introduction to dypgen 3
1.1 The calculator example . 3
1.2 BNF grammars . 5
1.3 Priorities . 6
1.4 Semantical actions . 6
1.5 The calculator with dypgen lexer generator . 7

2 Lexer generators 8
2.1 dypgen lexer generator . 8
2.2 External lexer generators . 13
2.3 Using a lexer generator different from ocamllex or dypgen 13
2.4 Position of the lexer . 14
2.5 Extending the lexer . 15

3 Resolving ambiguities 15
3.1 Priorities with relations . 15
3.2 Merge functions and keeping several trees . 17

3.2.1 Specific merge functions . 17
3.2.2 Example . 18
3.2.3 Global and generic merge functions . 19
3.2.4 Merging on different global and local data 20
3.2.5 Self-derivable non terminals and empty reductions 20
3.2.6 Merge warning . 21

3.3 Giving up a reduction . 21
3.4 Preventing a shift . 22

4 Auxiliary data 22
4.1 The fields global data and local data . 22
4.2 Example with local data . 25
4.3 Equality between data . 25
4.4 Example with global data . 26
4.5 Extending the scope of local data . 27

5 User actions and rules 27
5.1 Several actions for a rule . 27
5.2 Pattern matching on symbols . 28
5.3 Nested rules . 28
5.4 Inherited attributes . 29
5.5 Early actions . 30
5.6 The operators *, + and ? . 31
5.7 Preventing layout characters to be matched with ! and - 32
5.8 Knowing the next lexeme in a user action . 32

2

6 Dynamic extension of the grammar 34
6.1 Adding rules . 34
6.2 The type obj . 37
6.3 Example . 38
6.4 Scope of the changes . 39
6.5 Adding new non terminals . 41
6.6 Extending dynamically priority data . 42

7 Parsing control structures 43
7.1 The record dyp and the type dypgen toolbox . 43
7.2 The parser commands list and the type dyp action 43
7.3 parser pilot, parse, lexparse and update pp . 44
7.4 Saving and loading a parser . 46

8 Names defined by dypgen 49
8.1 Types and values defined in the .ml file . 49
8.2 Types and values defined in the .mli file . 50
8.3 Adding code to the .mli file and at the top of the .ml file 50
8.4 No generation of the .mli file and other options . 51
8.5 Defining the token type in a separate file . 51
8.6 The module Dyp of the library . 52

9 Other features 56
9.1 Preprocessing with cpp . 56
9.2 Generated documentation of the grammar . 56
9.3 Information about the parsing . 57
9.4 Warnings . 58
9.5 Error . 59
9.6 Maximum number of constructors and using polymorphic variants 59
9.7 Command-line options for ocamlc and include paths 59
9.8 Longest and shortest match for the parser . 60
9.9 Building with ocamlbuild . 60

10 Demonstration programs 60

A Acknowledgements 61

B Migration from ocamlyacc 62

C A complete example of grammar extension 63

1 Introduction to dypgen

1.1 The calculator example

It is traditional to start the documentation of a parser generator with the calculator exemple. Here
we only give the grammar file: dypgen takes a file ending with .dyp as input and generates a .ml

file and a .mli file.

3

For the program to be complete, one also need to generate a lexical analyser, which can be
done with ocamllex, dypgen or other lexer generators. The complete source for this example lies
in the directory demos/calc_ocamllex of the distribution.

Here is the file defining the calculator grammar:

%token LPAREN RPAREN <int> INT PLUS MINUS TIMES DIV EOL

%relation pi<pt<pp /* same as pi<pt pt<pp pi<pp */

%start main

%%

main : expr EOL { $1 }

expr :

| INT { $1 } pi

| MINUS expr(=pi) { -$2 } pi

| LPAREN expr RPAREN { $2 } pi

| expr(<=pp) PLUS expr(<pp) { $1 + $3 } pp

| expr(<=pp) MINUS expr(<pp) { $1 - $3 } pp

| expr(<=pt) TIMES expr(<pt) { $1 * $3 } pt

| expr(<=pt) DIV expr(<pt) { $1 / $3 } pt

Let us comment it briefly. More details are available later in this documentation.

• The first two lines starting with %token define the tokens also called terminal symbols of
the grammar. The lexical analyser is supposed to transform a character stream into a token
stream.

For instance, the token PLUS will probably (this is defined by the lexical analyser) correspond
to the character + in the input stream.

On the second line, we also indicate that the INT tokens comes with a value of type int.
They correspond to integer values in the input stream.

• The third line starting with %relation defines three priority levels, which intuitively will
correspond to atomic expressions (pi), products (pt) and sums (pp).

• The line starting with %start gives the entry point of the grammar. This means that one
can parse an input stream using the function Calc_parser.main which is the function you
need to call to actually parse something.

• The characters %% tell dypgen where the grammar of the parser begins. They are equivalent
to the keyword %parser.

• All the other lines define the grammar. The next section will explain how to write grammars.
Briefly we remark a BNF grammar (explained below) decorated with the new concept of
priority and with semantical actions between curly braces.

4

1.2 BNF grammars

A BNF grammar is a concise way of defining a language, that is a set of sequences of characters.
However, it is traditional and may be more efficient to define a language in to steps: lexical analysis
and grammatical analysis.

We will not describe lexical analysis here. We will assume an already defined lexer (for instance
using ocamllex) which defines some sets of words denoted using capital letters. For instance, in
that calculator example above, PLUS denotes one word “+” while INT denoted the set of all words
representing an integer.

These set of words defined by the lexer are usually called tokens or terminal symbols.
Then a BNF grammar, describe the language as a set of sequences of terminal symbols (they

sometime have to be separated by spaces).
The calculator grammar in this context is

expr: INT | MINUS expr | LEFTPAR expr RIGHTPAR

| expr PLUS expr | expr MINUS expr

| expr TIMES expr | expr DIV expr

This in fact just defines the language expr as the smallest language containing INT and closed
by the following construction rules:

• If w ∈ expr then −w ∈ expr (we assume here that MINUS contains only the word -, and
similar assumptions for the other tokens).

• If w ∈ expr then (w) ∈ expr

• If w,w′ ∈ expr then w+w′ ∈ expr

• If w,w′ ∈ expr then w−w′ ∈ expr

• If w,w′ ∈ expr then w∗w′ ∈ expr

• If w,w′ ∈ expr then w/w′ ∈ expr

In general, a grammar is define by a finite number of non-terminal symbols (the calculator
grammar has only one non-terminal: expr) and a set of rules describing the elements of each non-
terminal symbols. A rule associates to one non-terminal symbol a sequence of symbols (terminal
or non-terminal).

Then the languages corresponding to each non-terminals are defined simultaneously as the
smallest language satisfying every rules.

Let us consider another example:

a: INT | a MINUS b

b: INT | b PLUS a

This means that a and b are the smallest languages containing the integers and such that:

• If w ∈ a and w′ ∈ b then w−w′ ∈ a

• If w ∈ b and w′ ∈ a then w+w′ ∈ b

Then, it is easy to see that 0-0+0-0 is in the language a, because 0 is both in a and b which
implies that 0-0 is in a, from which we deduce that 0+0-0 is in b and then, it is easy to conclude.
However, 0-0+0-0 is not in b (an easy exercise).

5

1.3 Priorities

The problem with our calculator grammar as written in the previous section is that it is ambiguous
and wrong because for instance, there are to way to parse 3-2+1, one way equivalent to (3-2)+1

and the other way leading to 3-(2+1).
The second way is not the usual way to read this expression and will give a wrong answer when

we will compute the value of the expression in the semantical action.
We forget to say that our operator should be associated with the left and also that product

and division have priority over addition and subtraction.
To say so, dypgen provides priority constant and relation over them. In the case of the calcula-

tor, we define three priorities constants: pi, pt and pp. We define the relation < by pi<pt, pi<pp
and pt<pp.

For each rule, we say to which priority it belongs and for each non terminal in a rule, we give
the priority it accepts.

The calculator grammar in this context is

expr: INT pi

| MINUS expr(<=pi) pi

| LEFTPAR expr RIGHTPAR pi

| expr(<=pp) PLUS expr(<pp) pp

| expr(<=pp) MINUS expr(<pp) pp

| expr(<=pt) TIMES expr(<pt) pt

| expr(<=pt) DIV expr(<pt) pt

Let us comment some rules: in the rule E: expr(<=pp) PLUS expr(<pp) pp, we say that an
expression produced by this rule will be associated with the priority constant pp. We also say that
on the left of the PLUS token, only an expression of priority less or equal than pp can appear while
on the right, we are more restrictive since we only accept a priority stricly less that pp.

For the rule E: LEFTPAR expr RIGHTPAR pi, we associate the smallest priority to the resulting
expression and we give no constraint for the expression between parentheses.

More details about priorities will be given in the section 3.1.

1.4 Semantical actions

Now, parsing is not just defining acceptable sequence. One as to produce something from the
parsed sequence. This is performed using semantical actions, given after each rule.

An action is a piece of ocaml code returning data associated with the parsed sequence, it can
be used to build a parse-tree or, as with the calculator, to compute a value. Actions can access the
semantics (that is the data associated with) each non-terminal. Terminal symbols also can have
semantics associated with them by the lexical analyser.

In the code of an action, we access the semantical data of each symbol in the rule using notation
$1, $2, $3... ($3 is the semantics of the third symbol in the rule).

Action must be placed after each rule between curly braces and before the priority of the rule.
Let us look again at the calculator grammar, but with the semantical action added:

expr:

| INT { $1 } pi

| MINUS expr(<=pi) { -$2 } pi

6

| LPAREN expr RPAREN { $2 } pi

| expr(<=pp) PLUS expr(<pp) { $1 + $3 } pp

| expr(<=pp) MINUS expr(<pp) { $1 - $3 } pp

| expr(<=pt) TIMES expr(<pt) { $1 * $3 } pt

| expr(<=pt) DIV expr(<pt) { $1 / $3 } pt

Here, the actions compute the value of the numerical expression and the example is self ex-
plaining.

Remark: a non terminal can accept the empty sequence, by writing no symbol before the
opening curly brace of the action.

1.5 The calculator with dypgen lexer generator

The calculator example above assumes that we use an external lexer generator like ocamllex. One
can use instead the lexer generator provided by dypgen and define both the lexer and the parser
in the .dyp file. Here is a version of the calculator that uses dypgen own lexer generator:

%start main

%relation pi<pt<pp

%layout [’ ’ ’\t’]

%parser

main: expr "\n" { $1 }

expr:

| [’0’-’9’]+ { int_of_string $1 } pi

| "-" expr(=pi) { -$2 } pi

| "(" expr ")" { $2 } pi

| expr(<=pp) "+" expr(<pp) { $1 + $3 } pp

| expr(<=pp) "-" expr(<pp) { $1 - $3 } pp

| expr(<=pt) "*" expr(<pt) { $1 * $3 } pt

| expr(<=pt) "/" expr(<pt) { $1 / $3 } pt

You can find this example in the directory demos/calc. Here are the differences with the previous
example:

• The line starting with %layout defines which characters are considered to be simple layout
and that must be discarded by the lexer. They are defined with a regular expression. Here
the lexer discards any space and tabulation character.

• Regular expressions can be written directly on the right-hand sides of grammar rules, allowing
to define the lexer and the parser at the same time.

In this simple example no terminal symbol appears anymore. However dypgen lexer generator
can produce terminal symbols too. Here is another version of the calculator more similar to the
first example but still using dypgen’s lexer generator:

7

%start main

%relation pi<pt<pp

%lexer

main lexer =

[’ ’ ’\t’] ->

[’0’-’9’] -> INT { int_of_string (Dyp.lexeme lexbuf) }

"+" -> PLUS

"-" -> MINUS

"*" -> TIMES

"/" -> DIV

"(" -> LPAREN

")" -> RPAREN

%parser

main : expr EOL { $1 }

expr :

| INT { $1 } pi

| MINUS expr(=pi) { -$2 } pi

| LPAREN expr RPAREN { $2 } pi

| expr(<=pp) PLUS expr(<pp) { $1 + $3 } pp

| expr(<=pp) MINUS expr(<pp) { $1 - $3 } pp

| expr(<=pt) TIMES expr(<pt) { $1 * $3 } pt

| expr(<=pt) DIV expr(<pt) { $1 / $3 } pt

2 Lexer generators

You can use dypgen to generate a lexer for your parser or you can use an external lexer generator
like ocamllex or ulex.

2.1 dypgen lexer generator

If you use dypgen to generate your lexer then the entry functions (declared with %start) have the
following type:

?global_data:global_data_type ->

?local_data:local_data_type ->

obj Dyp.dyplexbuf ->

(ast_type * string) list

The nature of global_data and local_data is explained in section 4, obj Dyp.dyplexbuf is
the type of the lexer buffer (the type obj is explained in section 6.2). You make a lexer buffer
from a string, an input channel or a function with the following functions of the module Dyp of
the library:

8

val from_string :

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot ->

string ->

’obj dyplexbuf

val from_channel :

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot ->

in_channel ->

’obj dyplexbuf

val from_function :

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot ->

(string -> int -> int) ->

’obj dyplexbuf

These functions are similar to the functions of the same names of the module Lexing from the
standard library. They expect an argument of type parser_pilot, this argument is yielded by a
function named pp that is generated in the .ml file. For instance if you want to parse the string s

you can use:

let lexbuf = Dyp.from_string (Parser.pp ()) s

let result = Parser.main lexbuf

assuming your parser is defined in the file parser.dyp and the starting non terminal is main. The
result is of type:

(ast_type * string) list

ast_type denotes the type of the values yielded by the non terminal main, the string is the name
of the associated priority. The list contains one couple for each interpretation of the input string.
The list contains just one couple if the input is unambiguous. The frame of a lexer definition is as
follows:

%lexer

let ident = regexp ...

rule aux_lexer_1 [arg1 ... argn] =

parse regexp { action }

| ...

| regexp { action }

and aux_lexer_2 [arg1 ... argn] =

parse ...

and ...

main lexer =

regexp -> [Token] [{ action }]

regexp -> [Token] [{ action }]

...

9

This definition takes place before the definition of the parser. It begins with declarations of alias for
regular expressions. Then come the definitions of auxiliary lexers, those can be used for instance
to parse strings or comments. The syntax of their definitions is similar to definitions for ocamllex.
Finally the main lexer is defined after the line

main lexer =

A line

regexp -> Token { action }

means that when regexp is matched, the lexer returns the token Token with the associated value
returned by action. The action is optional. The token is optional too. If no token name is
written then the text matched by the regular expression is considered to be layout characters
and is discarded by the lexer. An action can be stated in this case too for its side-effect. Layout
characters can also be declared before the definition of the lexer with the keyword %layout followed
by the regular expression and an action code inside curly braces if needed. Auxiliary lexers can be
called from the user action code of the main lexer and of the auxiliary lexers. They are called with
their names followed by the arguments the last one being the lexer buffer. The current lexer buffer
is always available inside the action code with the name lexbuf. You can use a lexer defined by
ocamllex as an auxiliary lexer and call it from a user action. To do this you must convert the lexer
buffer to the lexer buffer type of ocamllex with the function:

val std_lexbuf : ’obj dyplexbuf -> Lexing.lexbuf

of the module Dyp. For instance say you want to match strings with a lexer string defined in a
file lex_string.mll, you can use the following entry in your main lexer definition:

’"’ -> STRING { Buffer.clear Lex_string.string_buf;

Lex_string.string (Dyp.std_lexbuf lexbuf);

Buffer.contents Lex_string.string_buf }

assuming the lexer string stores the matched string in the buffer string_buf defined in the file
lex_string.mll.

When using dypgen lexer generator you can write regular expressions directly in the right-hand
sides of the production rules of the grammar of the parser. They return a value of type string

that is available in action code in the corresponding variable like $1. A sequence of several regular
expressions yields as many variables. For instance in the action of the rule:

nt: "hello" "world"

the variable $1 has the value "hello" and $2 the value "world". Any layout character can be
matched between "hello" and "world". If you enclose the sequence inside parenthesis then it is
considered as one regular expression. In the action of the rule:

nt: ("hello" "world")

the variable $1 has the value "helloworld". The string "helloworld" must be matched to be
able to reduce with this rule.

10

Regular expressions have the same syntax as those of ocamllex except that the operator # of
character set difference is not available and it is not possible to do binding to sub-patterns (this is
done with the keyword as in ocamllex).

As with ocamllex the lexer always yields a unique token when there is at least one match.
A lexer generated by dypgen deals with ambiguity a bit differently than ocamllex does. Here is
how dypgen chooses the matching of the lexer: The matches that are not expected, taking into
account what has been parsed so far, are discarded. Among those which are expected the longest
are selected, then those belonging to the most recent lexer (if the lexer has been extended), then
the one generated by the higher regular expression in the precedence order. The order in which
the regular expressions appear in the file is their precedence order. The precedence of regular
expressions in right-hand side of grammar rule is unspecified but lower than that of the regular
expressions defined in the section main lexer = except for those that are just a string: they are of
higher precedence instead. The lexer can be extended when new grammar rules containing regular
expressions are introduced. In this case the precedence of these new regular expressions follows
the same rule. The precedence of regular expressions that match layout characters is lower than
that of other regular expressions (including those that match less characters) and is left unspecified
among them. Contrary to ocamllex it is not possible to select the shortest match instead of the
longest.

You can also keep all the tokens of maximum length (and which are expected). To do so define
the following variable:

let dypgen_choose_token = ‘all

in the header of the parser definition. And when you call the function lexparse (see section 7.3
for more information about this function) use the optional argument:

~choose_token:‘all

Note that in this case if there are several entries for the same terminal symbol in the lexer that are
matched then this terminal symbol is yielded as many times with its corresponding action each
time. Suppose these lines are in the lexer:

[’0’-’9’]+ -> INT { int_of_string (Dyp.lexeme lexbuf) }

[’0’-’9’]+ -> INT { -int_of_string (Dyp.lexeme lexbuf) }

Then when the lexer reads the integer 17 it returns to the lexer two tokens: INT(17) and INT(-17).

Note that when using ‘all the behaviour of the lexer pertaining to layout regular expressions
stays the same as the default one. If the lexer matches several layout regular expressions (all of
maximal length), then there are two possible cases:

• Only layout regular expressions are matched. Then one action is chosen among them and
executed.

• In addition to layout regular expressions, some non-layout regular expression is matched.
Then no action associated to layout regular expression is executed.

11

Remark that even when returning several tokens the lexer only returns the tokens of the
maximal length and drop the ones with a shorter length. This has counter-intuitive consequences.
For example consider the following grammar :

{ let dypgen_choose_token = ‘all }

%start main

%lexer

main lexer =

[’a’-’z’]+ -> ID

%parser

main:

| ’a’? d { "ab" }

| ID ’c’ { "id" }

d: ’b’ { }

Parsing fails on the string b even with

let dypgen_choose_token = ‘all

When parsing b the lexer first matches ’a’? with the empty string, then it matches ID with the
string b and the match with ’a’? is thrown because it is of shorter length. Afterwards the rule
main: ’a’? b is disqualified.

A nested rule can solve this problem. Change the first rule with this one:

main:

| ["a"]? d { "ab" }

and the parsing of b does not fail anymore. For more informations about nested rules see the
section 5.3.

When parsing a file you want to be able to track the number of lines and maybe from which
file the code you are parsing originates before possible preprocessing. To do so the two following
functions are available:

val set_newline : ’obj dyplexbuf -> unit

val set_fname : ’obj dyplexbuf -> string -> unit

These functions update the fields pos_lnum and pos_bol, and pos_fname of the lexer buffer
respectively. If lexbuf is your lexer buffer, you can access these fields with:

(Dyp.std_lexbuf lexbuf).lex_curr_p.pos_lnum

(Dyp.std_lexbuf lexbuf).lex_curr_p.pos_bol

(Dyp.std_lexbuf lexbuf).lex_curr_p.pos_fname

12

2.2 External lexer generators

If you use an external lexer generator like ocamllex to generate your lexer then the entry functions
(declared with %start) have the following type:

?global_data:global_data_type ->

?local_data:local_data_type ->

(lexbuf_type -> token) ->

lexbuf_type ->

(ast_type * string) list

Compared with the use of dypgen as a lexer generator, the function expects one extra argument:
a function of type:

lexbuf_type -> token

This function is the lexer that produces tokens for the parser. The type lexbuf_type denotes the
type of the lexer buffer (with ocamllex it is Lexing.lexbuf) and token is a type declared by dyp-
gen. The type token owns one constructor for each token that is declared with the keyword %token.

Note that you cannot use regular expressions in the right-hand side of the rules of the parser
for lexing purpose if you do not use dypgen as lexer generator. More precisely: if you write a
regular expression in a rhs then dypgen will assume that you use dypgen as lexer generator too.

2.3 Using a lexer generator different from ocamllex or dypgen

If you want to use another lexer than ocamllex or dypgen then you have to define the function
dypgen_lexbuf_position in the header. If you don’t need the position of the lexer you may use
the line:

let dypgen_lexbuf_position = Dyp.dummy_lexbuf_position

The function dummy_lexbuf_position is:

let dummy_lexbuf_position _ = (Lexing.dummy_pos, Lexing.dummy_pos)

With this function you don’t have access to relevant information about the position of the lexer
while parsing. If you need the position of the lexer in your action code, then you have to define
the function dypgen_lexbuf_position in the header accordingly (see 2.4).

If the type of the lexer buffer is constructed with some types defined in the header of the parser
definition, then you must include them in the .mli (see section 8.3).

The demo program tinyML_ulex uses Ulex as its lexer generator.
The demo program position_parser_token_list uses ocamllex but a different lexer buffer than
Lexing.lexbuf.

13

2.4 Position of the lexer

The following functions allow to know the location of the part of the input that is reduced to the
symbols that appear in the rule currently applied. They are available from the action code.

val symbol_start : unit -> int

val symbol_start_pos : unit -> Lexing.position

val symbol_end : unit -> int

val symbol_end_pos : unit -> Lexing.position

val rhs_start : int -> int

val rhs_start_pos : int -> Lexing.position

val rhs_end : int -> int

val rhs_end_pos : int -> Lexing.position

These functions tell what is the part of the input that is reduced to a given non terminal. They
should behave the same way as the functions of the same names of the module Parsing do in
ocamlyacc. These functions are part of the record dyp. When you use them you must use the
record dyp, like:

dyp.symbol_start ()

The demo program position illustrates the use of these functions with dypgen as lexer gener-
ator, and the program position_ocamllex with ocamllex.

If you want these functions to return relevant information when you use a lexer generator
different from ocamllex or dypgen, or when you do not use the interface of ocamllex directly with
dypgen, then you have to define the function dypgen_lexbuf_position in the header of the parser
accordingly. The type of this function is:

val dypgen_lexbuf_position : lexbuf_type -> (Lexing.position * Lexing.position)

where lexbuf_type is the type of the lexer buffer (it is infered by Caml). The two positions are
the position of the beginning of the last token that has been read by the parser and its end. The
type Lexing.position is:

type position = {

pos_fname : string;

pos_lnum : int;

pos_bol : int;

pos_cnum : int;

}

The demo program position_token_list is the same as position except that it first uses
ocamllex to make a list of tokens and then uses dypgen to parse this list of tokens. It makes use
of dypgen_lexbuf_position.

Note: the following abbreviations are available in the .dyp file: $< for dyp.Dyp.rhs_start_pos
and $> for dyp.Dyp.rhs_end_pos.

Remark that in some instances, the position returned by symbol_start and symbol_start_pos

looks inconsistent with the position returned by the functions for the right-hand side. This may

14

be the case when the right-hand side of the rule, which is used to reduce, begins with nullable non
terminals. In such a case the position returned by rhs_start and rhs_end for these symbols may
be smaller than the position returned by symbol_start. This is the case when there are layout
characters before the characters matched by the first non nullable symbol of the right-hand side
of the rule. Here is an example.

%start main

%layout ’ ’

%parser

main: eps "abc"

{ Printf.printf "eps start: %d, eps end: %d, main start: %d\n"

(dyp.Dyp.rhs_start 1) (dyp.Dyp.rhs_end 1)

(dyp.Dyp.symbol_start ());

0 }

eps: { 0 }

Parsing the string " abc", where the string begins with 3 spaces, returns

eps start: 0, eps end: 0, main start: 4

The reason for this inconsistency is that no layout character is read before reducing with a rule
with an empty right-end side, therefore the 3 spaces are not read. But those layout characters are
not included when computing the start of main. This seems to be the most useful convention.

2.5 Extending the lexer

It is possible to extend indirectly the main lexer generated by dypgen. The way to do it is to
introduce new grammar rules for the parser with regular expressions in the right-hand sides. It
is not possible to extend the definition of an existing terminal symbol neither to create a new
terminal symbol at runtime. However this does not prevent you from introducing new tokens. If
you want a new token at runtime then you can introduce a new rule with a new non terminal in
the left-hand side. This new non terminal will represent the new token. The right-hand side of the
new rule contains the regular expression that matches the lexemes for the new token. The section
6 explains how to extend the grammar at runtime.

3 Resolving ambiguities

There are two main mechanisms to handle ambiguities in dypgen: a system of priorities with
relations between them and the merge functions which can decide which parse-tree to keep when
a given part of the input is reduced to the same non terminal by two different ways. Two other
secondary mechanisms make possible to decide to give up a reduction with a rule (by raising the
exception Dyp.Giveup) or to prevent a shift (i.e. the parser is prevented from reading more input
without performing a reduction).

3.1 Priorities with relations

Each time a reduction by a rule happens, the corresponding parse-tree is yielded with a value
which is called a priority. Priorities are named and declared along with relations between them

15

which hold true with the keyword %relation. The symbol for the relation is < (but this does not
mean that it has to be an order). A declaration of priorities can be for instance:

%relation pi<pt pt<pp pi<pp

It is possible to declare a relation which is transitive on a subset of the priorities with a more
compact syntax.

%relation p1<p2<...<pn

means that the following relations hold: p1<p2, ... , p1<pn, p2<p3, ... , p2<pn, ... , p(n-1)<pn.
Thus the first example of relations declaration can also be written:

%relation pi<pt<pp

The declarations can use several lines, the following declaration is valid:

%relation pi<pt

pt<pp

%relation pi<pp

Each rule in the grammar returns a priority value when it is used to reduce. This priority is
stated by the user after the action code. For instance:

expr: INT { $1 } pi

If the parser reduces with this rule then it returns the value associated with the token INT and the
priority pi. The user can state no priority, then the default priority default priority is returned
each time a reduction with this rule happens. The value default_priority is part of the module
Dyp_priority_data available in the parser code.

Each non terminal in the right-hand side of a rule is associated with a set of priorities that it
accepts to perform a reduction. This set of priorities is denoted using the following symbols <, >
and = and a priority p.

(<p) denotes the set of all priorities q such that q<p holds. (<=p) denotes the previous set to
which the priority p is added. (>p) is the set of all priorities q such that p<q holds. Obviously
(>=p) denotes the previous set to which the priority p is added and (=p) is the set of just p. Note
that when declaring relations between priorities, the symbols > and = cannot be used.

If no set of priorities is stated after a non terminal in a right-hand side of a rule, then it means
that it accepts any priority. Thus to not state any set of priority is equivalent to state the set of
all priorities.

A basic example, you have the following rules:

expr: INT { $1 } pi

expr: MINUS expr(<=pi) { -$2 }

16

You parse the string: ‘-1’. First 1 is reduced to expr with the first rule. 1 is the returned value
and pi is the returned priority. Then the reduction with the second rule can happen because the
non terminal expr in its right-hand side accepts the priority pi. This reduction is performed, the
returned value is -1 and the returned priority is default priority. Now if we want to parse the
string ‘--1’ a syntax error will happen, because when -1 is reduced, the priority default priority

is yielded, which is not accepted by the second rule and therefore a reduction by this rule cannot
happen a second time.

Another example, we have the relations pi<pt<pp and the following grammar:

expr:

| INT { $1 } pi

| LPAREN expr RPAREN { $2 } pi

| expr(<=pp) PLUS expr(<pp) { $1 + $3 } pp

| expr(<=pt) TIMES expr(<pt) { $1 * $3 } pt

and we parse the following input: 1 + 2 * 3

1 and 2 are reduced to expr, each returning the priority pi, then the parser explores the shift
and the reduction. The parser can reduce with the third rule because pi<pp holds, the priority
pp is returned. After 3 is reduced to expr, the parser cannot reduce with rule 4 after the reduc-
tion by rule 3 because pp<pt does not hold. But the exploration of the possibility of a shift of
* after reducing 2 to expr leads to a successful parsing (which respects the precedence of * over +).

The user can declare a priority without stating any relation with it by adding it in the section
after %relation. You should declare any prorities which has no relation. If you use a priority that
is not declared and has no relation, in a rule, then dypgen will emit a warning.

3.2 Merge functions and keeping several trees

3.2.1 Specific merge functions

When a part of the input is reduced by several different ways to a same non terminal nt then the
parser must decide whether to keep all the abstract syntax trees (ASTs) yielded or to choose just
one or a few of them, or to make a new tree from them. By default only one tree is kept, and the
other ones are discarded. It is not possible to know which one is kept. The user can override the
default choice. It is possible to define a function dyp_merge_Obj_nt of type:

val dyp_merge_Obj_nt:

(nt_type * global_data_t * local_data_t) list ->

nt_type list * global_data_t * local_data_t

The type names stated here are not actually defined anywhere but are used here to make under-
stand the nature of the argument and result of the merge functions. The type nt_type represents
the type of the value returned when one reduces to the non terminal nt. The argument of the
function is the list of the ASTs which are the different interpretations which were yielded and
kept for the non terminal nt for a given part of the input. Theses ASTs are associated with their
corresponding global_data and local_data in a triple (see section 4 for more information about

17

global_data and local_data). The default behavior of dypgen is to not merge when the data
are different. Therefore by default all the global data are actually the same as well as all the local
data. This behavior can be made different (see 3.2.4).

The merge function returns a result like:

(tree_list, global_data, local_data)

Where tree_list is a list of ASTs which are kept as the different interpretations for the non ter-
minal nt for the considered part of the input. global_data and local_data are the global_data

and local_data that are kept for the parsing.

The user can define such a merge function for each non terminal in the header of the parser.

For example the following merge function keeps all the ASTs for the non terminal nt, without
considering global_data and local_data:

let dyp_merge_Obj_nt l = match l with

| (_,gd,ld)::_ -> List.map (fun (o,_,_) -> o) l, gd, ld

| [] -> assert false

A merge function is only called on ASTs which were yielded with the same priority. If a part
of the input is reduced to the same non terminal by two different ways but yielding two distinct
priorities, then each AST is kept and used independently for the parsing, but they are not merged.

3.2.2 Example

Here is an example of using a merge function to enforce the precedence of the multiplication over
the addition. Suppose we have the following grammar:

expr:

| INT { Int $1 }

| expr PLUS expr { Plus ($1,$2) }

| expr TIMES expr { Times ($1,$2) }

And the following string: 3+10*7 should be parsed Plus (3,Times (10,7)), more generally the
parse result of any string should respect the precedence of * over +. Then we can do this by
defining the following merge function:

let rec dyp_merge_Obj_expr = function

| (o1,gd,ld)::(o2,_,_)::t ->

begin match o1 with

| Times ((Plus _),_)

| Times (_,(Plus _)) -> dyp_merge_Obj_expr ((o2,gd,ld)::t)

| _ -> dyp_merge_Obj_expr ((o1,gd,ld)::t)

end

| [o,gd,ld] -> [o],gd,ld

| _ -> assert false

18

You can find this example implemented in the directory demos/merge_times_plus.

Note that the argument of the merge function (the list) always has at least two elements when
called by dypgen.

Since it is not possible to know which tree is kept by the default merge function, you should
only rely on it when all the trees yielded by the ambiguous non terminal are actually the same, or
when it does not matter which one is chosen.

3.2.3 Global and generic merge functions

In addition to these merge functions which are specific to one non terminal, the user can also define
one global merge function called dyp_merge, and several generic merge functions. A generic merge
function can be the merge function of several different non terminals. The type of the global merge
function is the following:

type ’a merge_function =

(’a * global_data_t * local_data_t) list ->

’a list * global_data_t * local_data_t

The global merge function can be defined in the header of the parser definition, for instance to
define a global merge function which keeps all the parse trees:

let dyp_merge l = match l with

| (_,gd,ld)::_ -> List.map (fun (o,_,_) -> o) l, gd, ld

| [] -> assert false

Then it will be the merge function of any non terminal nt which has not its own function
dyp_merge_nt and has no generic merge function assigned to it.

Generic merge functions are defined in the header. Then to assign a merge function to one or
several non terminal one uses the keyword %merge in the following way:

%merge my_merge_function Obj_nt1 Obj_nt2 Obj_nt3 Obj_nt4 Obj_nt5

where my_merge_function is the name of the generic merge function which has been defined in
the header and nt1 ... nt5 are the names of the non terminal which are assigned this generic merge
function.

Note that the global merge function must be polymorphic and accept the type of values yielded
by any non terminal. This is not the case for a generic merge function as long as it is used for
non terminals that return values of the same type. In the special case when all the non terminals
return values of the same type, the global merge function does not have to be polymorphic.

There are two predefined generic merge functions available to the user in the module Dyp of
the library:

val keep_all : ’a merge_function

val keep_one : ’a merge_function

19

They keep respectively all the ASTs, and one of the AST, they choose global_data and local_data

arbitrarily. If no global merge function is defined then by default it is keep_one.

Note that you can use the predefined merge functions as generic functions and as the global
merge function as well. If you want to keep all the ASTs for all the non terminals, just define the
following in the header:

let dyp_merge = keep_all

You can find a very simple example using keep_all in the directory demos/forest where a
parse forest is yielded.

Note that the merge functions are in fact associated with the constructors of the type obj (see
section 6.2) rather than with the non terminals. Which means that any non terminal that shares
the same constructor is assigned the same specific merge function. And that using %merge you
can assign a generic merge function to constructors introduced with the keyword %constructor

(see section 6.2 for more information). Now keep in mind that despite the fact merge is associated
with a constructor, merge is only applied to different parsings of the same non terminal (and same
part of the input and yielding the same priority) and never to distinct non terminals even if they
have the same constructor.

3.2.4 Merging on different global and local data

You may want to merge ASTs even if their corresponding global data or local data are different.
Then you have to define the variable:

val dypgen_keep_data : [‘both|‘global|‘local|‘none]

in the header of the parser, or use the functions parse or lexparse (discussed in section 7.3) with
the optional argument:

?keep_data : [‘both|‘global|‘local|‘none]

• ‘both is the default behavior: if global data is different or local data is different then the
ASTs are not merged.

• ‘global allows merging only when global data are equal but local data may be different.

• ‘local allows merging only when local data are equal but global data may be different.

• ‘none makes merging happen disregarding whether the data are equal or not.

3.2.5 Self-derivable non terminals and empty reductions

In the general case, when a merge function is called for a non terminal nt and a given part
of the input, it means that this part will never be reduced to nt again. The arguments passed
to the merge function are all the ASTs that are possible when reducing this part of the input to nt.

As a special exception this is not true in two cases:

• When the part of the input that is considered is the empty string

20

• When the non terminal can derive itself. For instance with the rules:

a: b c

b: a

c:

the non terminal a can derive itself (this is also true for b).

In such cases, as soon as two possible ASTs are yielded for a part of the input and a given non
terminal, the corresponding merge function is called on them. If afterward a third AST is yielded
then the merge function is called again on this third AST and on the result of the previous call to
the merge function.

In the general case, the reductions are performed in an order such that an AST is never merged
after being used by another reduction. This ensures, in particular, that a reduction that spans a
bigger part of the input does not miss the results of reductions of subparts of the input when they
are relevant.

However it is not always possible to avoid this situation when reducing to a self-derivable non
terminal. In such a case, a possible solution is to use a reference on a list of all possible ASTs for
the nodes corresponding to self-derivable non terminals, and when a merge happen, to update the
list.

3.2.6 Merge warning

To know whether a merge happens you can use the command line option --merge-warning with
dypgen. Then the generated parser will emit a warning on the standard output each time a merge
is added to its merge working list and print the name of the non terminal which will be merged.
The number of merge warnings is equal to the length of the list passed in argument to the merge
function minus one.

Warning: when there is an error of type with the arguments or the result of a merge function,
Caml reports it and points to the .ml file generated by dypgen, not to the .dyp input file, which
may be puzzling. In particular make sure your merge functions return a list of ASTs as the first
value of the returned tuple and not just an AST, otherwise you will have an error message pointing
to the generated .ml file.

3.3 Giving up a reduction

When a reduction occurs this reduction is given up if the exception Dyp.Giveup is raised in the
corresponding action code.

expr:

| INT { $1 }

| expr DIV expr { if $3=0 then raise Dyp.Giveup else ($1 / $3) }

This is an example where a division by zero is not syntaxically correct, the parser refuses to reduce
a division by zero. We can also imagine a language with input files being parsed and typed at the
same time and an action would give up a reduction if it detected an incompatibility of type. Let
us assume we have the following input for such a language:

21

exception Exception

let head l = match l with

| x::_ -> x

| _ -> raise Exception

let a = head 1::[2]

Then the parser tries to reduce head 1 to an expression, but the typing concludes to an incom-
patibility of type. Hence an exception Giveup is raised which tells the parser not to explore this
possibility any further. Then the parser reduces 1::[2] to an expression and thereafter head

1::[2] is reduced to an expression without type error.

3.4 Preventing a shift

When a reduction occurs it is possible to prevent the shift with the action code. You have to state
the character ‘@’ before the left brace which begins the action code and returns the following list
along with the returned value of your action in a couple:

@{ returned_value, [Dyp.Dont_shift] }

The list after returned_value is called the parser commands list, see section 7.2 for more infor-
mation about it. Here is an example, we have the following rules in a grammar:

expr:

| INT { Int $1 }

| expr COMMA expr { action_comma $1 $3 }

Assuming we have the following input: 1,2,3, there are two ways to reduce it to expr. First one:
1,2 is reduced to expr then expr,3 is reduced to expr. Second one: 2,3 is reduced to expr then
1,expr is reduced to expr. Now if we have the input 1,2,...,n there are as many ways to reduce
it to expr as there are binary trees with n leaves. But we can use the following action code instead:

expr:

| INT { Int $1 }

| expr COMMA expr @{ action_comma $1 $3, [Dyp.Dont_shift] }

Then there is only one way to reduce 1,2,3 to expr: the first one, because when [Dyp.Dont_shift]

is returned the parser will not shift the comma without reducing. And there is only one way to
reduce 1,...,n to expr.

The constructor Dont_shift is part of the type dyp_action (see section 7.2), which is defined
in the module Dyp of the library.

4 Auxiliary data

4.1 The fields global data and local data

With GLR, the parsing can follow different interpretations independently and simultaneously if
there are local ambiguities. As a consequence if there are accesses and changes to data through
side-effects for each of these parsings, there can be unwanted interactions between them. For this

22

reason, using side effects for the purpose of storing data should be avoided during the parsing. If
you want to build and store data while parsing and access this data from within the action code
then you should use immutable data and the record fields dyp.global_data or dyp.local_data.
The record dyp is available in any user action code, its type is defined in the module Dyp of the
library dyp.cm[x]a, see the section 7.1 for more information about it. If dyp.global_data or
dyp.local_data are used, then the user must define their initial values in the header with the
names:

let global_data = some_initial_data

let local_data = some_other_data

global_data and local_data can be passed to the parser as argument since they are optional
arguments of the parser. For instance if ‘main’ is a start symbol of the grammar and it returns
values of type main_type then the following function is defined in the generated code:

val main :

?global_data:gd_type ->

?local_data:ld_type ->

(lexbuf_type -> token) ->

lexbuf_type ->

(main_type * string) list

where gd_type and ld_type represents the type of the global and local data. lexbuf_type is the
type of the lexing buffer, if you use ocamllex then it is Lexing.lexbuf.

If you use dypgen to generate your lexer then the type of main is:

val main :

?global_data:global_data_type ->

?local_data:local_data_type ->

obj Dyp.dyplexbuf ->

(main_type * string) list

The record dyp is available in the action code and you can access the values of global_data
and local_data through the fields of dyp that have the corresponding names. You can return
new values for global_data and local_data using the list of values of type dyp_action. To do
that you state the character ‘@’ before the action code and you return the list

[Dyp.Global_data new_global_data]

along with the returned value of your action if you want to change global_data. Or the list

[Dyp.Local_data new_local_data]

if you want to change local_data. Or the list

[Dyp.Global_data new_global_data; Dyp.Local_data new_local_data]

if you want to change both global_data and local_data. For more information about the type
of the constructors Global_data and Local_data and the parser commands list see section 7.2.

The data accessible with dyp.global_data follows the parsing during the reductions and the
shifts. If at one point the parser follows different alternatives then it evolves independently for

23

each alternative (but side-effects may cause unwanted interactions between them, therefore they
should be avoided).

The same is true for dyp.local data except that when a reduction happens, it is ‘forgotten’
and returned to its previous value. More precisely: when you return a new value for local_data

in an action which yields a non terminal nt, then this local_data is not forgotten (unless you do
it) in any action which follows until this non terminal nt is used in another reduction. When this
happens, dyp.local_data is forgotten and returns to its previous value just before the execution
of the action code of this reduction.

Here is an example:

a: TOK_1 b TOK_2 c TOK_3 d EOF @{ action_8, [Local_data some_ld] }

b: e f @{ action_3, [Local_data local_data_3] }

e: A1 @{ action_1, [Local_data local_data_1] }

f: A2 @{ action_2, [Local_data local_data_2] }

c: g h @{ action_6, [Local_data local_data_6] }

g: B1 @{ action_4, [Local_data local_data_4] }

h: B2 @{ action_5, [Local_data local_data_5] }

d: C @{ action_7, [Local_data local_data_7] }

We parse the string:

TOK_1 A1 A2 TOK_2 B1 B2 TOK_3 C EOF}

• Assume that at the beginning of the parsing dyp.local_data has some initial value local_data_0.

• The first action to be performed is action_1, it has access to local_data_0 and it returns
local_data_1,

• then the next action is action_2, it has access to local_data_1 and returns local_data_2,
although this is useless in this case because it is about to be forgotten.

• Then the reduction of e f to b happens. dyp.local_data comes back to its value before
action_1 was performed, that is local_data_0. action_3 is performed and it returns the
value local_data_3 for local_data.

• The next action to be performed is action_4, dyp.local_data has the value local_data_3

and it returns local_data_4,

• then action_5 has access to this new value and returns local_data_5 but it is useless in
this case.

• The reduction of g h to c happens and the value of dyp.local_data is again local_data_3,
the value it had just after action_3 was applied. action_6 returns the value local_data_6

for local_data.

• The next action is action_7 which has access to local_data_6. It returns local_data_7

but it is useless since it is about to be forgotten.

• The reduction with the first rule is performed, the value of dyp.local_data comes back to
local_data_0 and the last action action_8 is performed.

24

4.2 Example with local data

dyp.local data is useful, for instance, to build a symbol table, and makes possible to use it to
disambiguate. Assume the following grammar and action code:

main: expr "\n" { $1 }

expr: [’0’-’9’]+ { Int (int_of_string $1) }

| IDENT { if is_bound dyp.local_data $1 then Ident $1

else raise Giveup }

| "(" expr ")" { $2 }

| expr "+" expr { Plus ($1,$3) }

| "let" binding "in" expr { Let ($2,$4) }

binding: IDENT "=" expr

@{ Binding ($1,$3),

[Local_data (insert_binding dyp.local_data $1 $3)] }

If we keep all the parse trees (see merge functions section 3.2), then the following input string:

let x = 1 in x+1

yields the two following parse trees:

(let x = 1 in (x+1))

((let x = 1 in x)+1)

But this input string:

let x = 1 in 1+x

only yields one parse-tree:

(let x = 1 in (1+x))

Moreover some input are detected as invalid because of unbound identifiers before the whole string
has been parsed, like:

(let x = 1 in y+2) + ...

This example is available in the directory demos/local data.

4.3 Equality between data

A function of equality between two global data named global_data_equal can be defined oth-
erwise it is by default the physical equality (==), same thing for local_data but the function
is called local_data_equal. These equality functions are used by the parser for optimization
purpose. In some cases two distinct GLR parsings may share their global_data and local_data

if both of them are deemed equal by global_data_equal and local_data_equal respectively. In
this case one the two data is chosen and the other is discarded for each of the global_data and
local_data.

25

4.4 Example with global data

Here is a very simple example of use of dyp.global_data, it counts the number of reductions.

{ open Dyp

let global_data = 0

let global_data_equal = (=) }

%start main

%relation pi<pt<pp

%layout [’ ’ ’\t’]

%%

main: expr "\n"

{ Printf.printf "The parser made %d reductions for this interpretation.\n"

dyp.global_data;

$1 }

expr:

| [’0’-’9’]+

@{ int_of_string $1, [Global_data (dyp.global_data+1)] } pi

| expr(<=pp) "+" expr(<pp)

@{ $1 + $3, [Global_data (dyp.global_data+1)] } pp

| expr(<=pt) "*" expr(<pt)

@{ $1 * $3, [Global_data (dyp.global_data+1)] } pt

For instance we parse 5*7+3*4, when 4 is reduced, global_data is incremented from 4 to 5 (note
that it will actually not count the real total number of reductions, but only the number of reduc-
tions made for the first interpretation of the input). This example is available in the directory
demos/global_data.

Here is a less basic example and where dyp.global_data can be useful, suppose we have the
following grammar:

expr:

| LIDENT

| INT

| FLOAT

| LPAREN expr COMMA expr RPAREN

| expr PLUS expr

| LPAREN expr RPAREN

| expr PLUSDOT expr

We parse an input and the following string is a part of this input:

(x+.3.14,(x+1,(x+5, ...)))

26

Where ... stands for something long. Suppose we are typing the expressions in parallel with
their parsing and we want to reject the previous string as early as possible. We do not want
to wait for reducing the whole string to detect the type incompatibility of x. Then we can use
dyp.global_data for that purpose and when reducing x+.3.14 we store in global_data that x

is of type float and then when we reduce x+1 we have this information still stored in global_data

which is accessible from the action code. And we can detect the type incompatibility whithout
having to parse more input.

4.5 Extending the scope of local data

In addition to dyp.local_data a field dyp.last_local_data is available. It contains the value
of local_data when the reduction of the last non terminal of the right-hand side of the current
rule occured. This makes possible to extend the scope of local_data using:

[Dyp.Local_data dyp.last_local_data]

Extensions of the scope of local_data are useful when you want to use a left-recursive rule
instead of a right-recursive one and you still want to use local_data but not global_data. For
instance:

rev_ident_list:

| { [] }

| rev_ident_list IDENT

@{ $2::$1, [Dyp.Local_data (String_set.add $2 dyp.last_local_data)] }

ident_list:

| rev_ident_list @{ List.rev $1, [Dyp.Local_data dyp.last_local_data] }

Left-recursive rules are more efficient than right-recursive ones with a GLR parser driven by
an LR(0) automaton, which is currently what dypgen generates.

5 User actions and rules

5.1 Several actions for a rule

It is possible to bind several actions to the same rule, but only one will be completely performed.
When there are several actions for the same rule, the parser tries them one after the other until
the first one that does not raise Giveup. To bind several actions to a rule, write the rule as many
times as you need actions and state a different action after the rule each time. The actions are
tried by the parser in the same order as they appear in the definition file .dyp. For instance with
the following actions:

expr:

| INT { if $1 = 0 then raise Dyp.Giveup else $1 }

| INT { 100 }

an integer returns its value except for 0 which returns 100.

27

When a rule is dynamically added to the grammar, if it was already in the grammar, then the
action it was bound to is still in the grammar but when a reduction by the rule occurs the old
action will be applied only if the new one raises Giveup.

It is possible to execute all the actions bound to each rule instead of just the first that does
not raise Giveup. For this use the option: --use-all-actions or declare:

let dypgen_use_all_actions = true

in the header of the parser definition.

5.2 Pattern matching on symbols

It is possible to match the value returned by any symbol in a right-hand side against a pattern.
The syntax is just to add the pattern inside < and > after the symbol name and after the possible
priority constraint. For instance we may have the following:

expr: INT<x> { x }

which is identical to:

expr: INT { $1 }

One can use pattern matching to have a guarded reduction. Assuming the lexer return OP("+")

on ‘+’ and OP("*") on ‘*’, we can have the following rules:

expr:

| expr OP<"+"> expr { $1 + $2 }

| expr OP<"*"> expr { $1 * $2 }

The patterns can be any Caml patterns (but without the keyword when). For instance this is
possible:

expr: expr<(Function([arg1;arg2],f_body)) as f> expr { some action }

The value returned by an early action can also be matched. You can write:

nt0: TOK1 nt1 ...{ early_action }<pattern> nt2 TOK2 nt3 { action }

One can use a pattern after a regular expression too (the value is always of type string).

The directory calc_pattern contains a version of the calculator which uses patterns (in a basic
way).

5.3 Nested rules

A non terminal in a right-hand side can be replaced by a list of right-hand sides in brackets, like:

nt1:

| symb1 [symb2 symb3 { action1 } prio1

| symb4 symb5 { action2 } prio2

| symb6 symb7 { action3 } prio3]<pattern> symb8 symb9 { action4 } prio4

| ...

28

The pattern in < and > after the list of nested rules is optional.

In addition to be a convenient way to embed subrules, nested rules allow a useful trick when
you use dypgen as the lexer generator. Consider the following grammar :

{ let dypgen_choose_token = ‘all }

%start main

%lexer

main lexer =

[’a’-’z’]+ -> ID

%parser

main:

| ’a’? d { "ab" }

| ID ’c’ { "id" }

d: ’b’ { }

Parsing fails on the string b for reasons explained at the end of section 2.1.

A nested rule can solve this problem by changing the first rule with:

main:

| ["a" { }]? d { "ab" }

then the parsing of b does not fail anymore. You can also omit the action and write it:

main:

| ["a"]? d { "ab" }

When an action is omitted then by default the reduction by the rule returns the value bound
to the last symbol of the right-hand-side (however it is not allowed to omit the action when the
right-hand-side is empty). Note that something like: [’a’] will still be interpreted as a character
set and not as a nested rule.

5.4 Inherited attributes

Inherited attributes are a way to send information down the parse tree in a way that is more
explicit than with the global and local data discussed in section 4 and that is specific to a non
terminal. It can be seen as a parameterization of a non terminal with a Caml value. Here is a
simple example:

main: a{1} "b" { $1 }

a: "a" { $0 }

on the input ab the parser returns 1. Here {1} states that the caml integer 1 is sent to the next
rule with left-hand side a. The symbol $0 in the action of the second rule is bound to the inherited
attribute which is 1 here.
Here is an example with one more level:

29

main: a{1} "c" { $1 }

a: b{$0+1} "b" { $1 }

b: "a" { $0 }

On the input abc it returns 2. A version with pattern matching on left-hand side:

main: a{1} "c" { $1 }

a<i>: b{i+1} "b" { $1 }

b<j>: "a" { j }

Inherited attributes are experimental currently, and the full class of L-attribute grammar is not
quite supported yet. Left-recursive rules compute inherited attributes for a depth of 2 at most.
For example with the following grammar:

main: a{1} "b" { $1 }

a<i>:

| a{i+1} "a" { $1 }

| "a" { i }

the input ab returns 1 and the input aab returns 2, as expected. But the input aaab and any
input with more than 2 a returns the integer 2, and not the number of a.

5.5 Early actions

It is possible to insert action code in the right-hand side of a rule before the end (the final action)
of this right-hand side. This is an early action. For instance you may have:

expr: LET IDENT EQUAL expr ...@{ binding dyp $2 $4 } IN expr { Let ($5, $7) }

Note that you have to write three dots ‘...’ before the early action. The value returned by the
early action is accessible to the final action as if the early action were a symbol in the right-hand
side. In the rule above it is accessible with $5. The record dyp is passed to binding to have access
to dyp.local_data. You may use the character ‘@’ depending whether you want to return a parser
commands list or not.

For the parser the rule:

expr: LET IDENT EQUAL expr IN expr

does not exist. Instead dypgen creates the following rule:

expr: LET IDENT EQUAL expr dypgen__early_action_0 IN expr

Where dypgen__early_action_0 is a non terminal symbol created by dypgen that sends down
inherited attributes that carry the information of the preceding non terminals. Therefore writing

expr: LET IDENT EQUAL expr ...@{ binding dyp $2 $4 } IN expr { Let ($5, $7) }

is equivalent to:

expr: LET IDENT EQUAL expr a{$2, $4} IN expr { Let ($5, $7) }

a<ident, exp>: { binding dyp ident exp }

30

As a consequence if you return a value for local_data in the early action, then this new value
of local_data is accessible to any action which is performed before the final action is applied (the
final action not included). For instance if we have:

expr: LET IDENT EQUAL expr ...@{ binding dyp $2 $4 } IN expr { Let ($5,$7) }

with

let binding dyp name exp =

Binding (name,exp),

[Local_data (insert_binding dyp.local_data name exp)]

Then during the recognition of the last non terminal expr of the righ-hand side of the rule, any
action has access to the value of dyp.local_data that is the value for local_data returned by
binding called by the early action. But it is not accessible anymore when { Let ($5,$7) } is
executed.

It is possible to insert several early actions in a rule, like:

nt1: TOK1 nt2 ...@{ pa_1 } nt2 nt3 ...{ pa_2 } nt4 TOK2 ...{ pa_3 } TOK3

{ final_action }

Note that if a rule exists two times in the parser definition, one time with early actions and
another time whithout early action, or both times with early actions, then each of them may be
tried by the parser to reduce regardless of whether the other raised Giveup or not. This differs from
the case where both of them do not have early action where at most one of the actions assigned
to the same rule is executed entirely.

Note: if your parser makes use of at least one early action that returns a parser commands
list (i.e. of the form ...@{ pa }), then you must compile with the option -rectypes and use the
option --ocaml "-rectypes" with dypgen (see the end of section 7.2).

5.6 The operators *, + and ?

When a symbol on a right-hand side of a rule is followed by ‘*’ then the parser must match nothing
or several times this symbol. And the result is a list. For instance the following rule:

list: "(" expr * ")" { $2 }

matches a list of zero or more expr inside parentheses and $2 has the type expr list assuming
expr is the type of the values returned when the parser reduces to the non terminal expr.

Nested rules can also be followed by *. Example of a rule:

tuple: "(" expr ["," expr {$2}]* ")" { $2::$3 }

This can also be written without the action {$2} since when an action is omitted then by default
the reduction by the rule returns the value bound to the last symbol of the right-hand-side (however
it is not allowed to omit the action when the right-hand-side is empty):

tuple: "(" expr ["," expr]* ")" { $2::$3 }

31

The operator ‘+’ has the same effect as * except that the symbol must be matched at least
once. Example of a rule:

expr: "fun" arg + "->" expr

When a symbol is followed by the operator ‘?’ it is matched zero or one time. The returned
type is an option. The operators *, + and ? can be followed by a pattern (see section 5.2 for more
information about pattern matching on symbols). After * and + a pattern must match a list. But
after a ? it does not have to match an option since a pattern pat stated after ? is automatically
replaced with: (Some pat|None). For instance you can use: TOKEN?<"|"> if you want to match
either nothing or a terminal named TOKEN with the associated value "|". Note that a pattern
following a ? must not contain any binding.

Here are other examples of rules:

statement: infix INT symbolchar+ ["," (symbolchar+)]* ";" ";"

@{ let gd = infix_op ($3::$4) $2 $1 dyp.global_data in

Infix_stm, [Global_data gd] }

expr: "match" expr "with" "|"? match ["|" match]*

{ Match_with ($2,$5::$6) }

These rules are used in the demo program tinyML.

5.7 Preventing layout characters to be matched with ! and -

When you use dypgen as the lexer generator you can make a rule match only when no layout
character has been matched in the part of the input that is reduced with the rule. To do this state
the character ‘!’ at the beginning of the right-hand side of the rule. It has no effect when using
another lexer generator than dypgen.

You can use the character ‘-’ before a symbol to forbid layout characters just before the sym-
bol. When stated at the end of a right-hand side before the user action it forbids layout characters
before the next token to be read after the reduction by this rule.

Note that when some part of the input is reduced to the same non terminal by two different
ways but that in one case layout characters are allowed to follow and in the other case they are
not, no merge happen (see section 3.2 for more information about merge functions).

5.8 Knowing the next lexeme in a user action

You may want to know the next lexeme to be matched by the lexer in a user action. If you are
using a lexer generated by dypgen then you can do this calling the function dyp.next_lexeme:

next_lexeme : unit -> string list

next_lexeme is a field of the record dyp (see section 7.1 for more information about this record).

When dyp.next_lexeme is called in a user action it returns the list of the next lexemes matched
by the parser until the first non-layout lexeme. The list is in reverse order, i.e. the first element

32

of the list is the non-layout lexeme. If the lexer does not match anything then an empty list is
returned. If one or several layout lexemes are matched but no non-layout lexeme then a list with
the layout lexemes is returned, with the last match first.

Note however that next_lexeme does not always exactly returns the lexeme the lexer will read.
These discrepancies have two causes. First, next_lexeme does not take into account the preceding
context as the lexer does, because at this stage next_lexeme does not have enough information to
do so. Second, when matching the regular expressions of the lexer, next_lexeme does not execute
the associated user actions, in particular auxiliary lexers are not called. Theses cases are detailed
below.

The non-layout lexeme returned by next_lexeme might be longer than the one that will be
matched by the lexer, i.e. the lexeme read by the lexer is a prefix of the lexeme returned by
next_lexeme. This case may happen when the lexer can recognize two tokens, one being a prefix
of the other, and the context prevents the longer to be matched. An example of this is the following
grammar:

%start main

%parser

main: nt "b" "c" "d" { () }

nt: "a" { print_endline (List.hd (dyp.Dyp.next_lexeme ())) }

| "bc" { () }

Assuming one calls the parser on the string "abcd", next_lexeme returns ["bc"] because the
lexer has the regular expression matching the string "bc" and when the user action is called the
string "bc" is a prefix of the remaining of the character stream (i.e. "bcd"), and the string "bc"

is chosen over the string "b" because it is longer. Whereas the lexer will only read the character
b because it does not expect the string "bc" given what has already been parsed.

Another case where there is a discrepancy between next_lexeme and the lexer is when next_lexeme

matches a non-layout lexeme whereas the lexer only matches a layout lexeme. Here is an example:

%start main

%layout ’ ’

%parser

main: nt "bcd" { () }

nt: "a" { print_endline (List.hd (dyp.Dyp.next_lexeme ())) }

| " b" { () }

Calling the parser on "a bcd", next_lexeme returns [" b"], whereas the lexer will first read the
layout lexeme ’ ’, skip it and then will read the lexeme "bcd".

Finally here are two cases where next_lexeme returns a wrong result because it does not call
the auxiliary lexer:

{ open Dyp

let string_buf = Buffer.create 10 }

%start main

%lexer

33

rule string = parse

| ’"’ { () }

| _ { Buffer.add_string string_buf (Dyp.lexeme lexbuf); string lexbuf }

main lexer =

’"’ -> STRING { Buffer.clear string_buf; string lexbuf;

Buffer.contents string_buf }

%parser

main: nt STRING { () }

nt: "a" { print_endline (List.hd (dyp.next_lexeme ())) }

Calling the lexer on a"hello", next_lexeme just returns ["\""] (a string containing the character
‘"’), whereas the lexer will read the string "hello" (‘"’ included).

Calling an auxiliary lexer to parse commentaries may have this effect too:

%start main

%lexer

rule comment n = parse

| "*/" { if n>0 then comment (n-1) lexbuf }

| "/*" { comment (n+1) lexbuf }

| _ { comment n lexbuf }

main lexer = "/*" -> { comment 0 lexbuf }

%parser

main: nt "bcd" { () }

nt: "a" { print_endline (List.hd (dyp.Dyp.next_lexeme ())) }

| "efg" { () }

Calling the lexer on a/*efg*/bcd, next_lexeme returns ["efg";"/*"], whereas the lexer reads
/*efg*/, skips it and then reads the lexeme bcd.

These cases may not be typical but you should watch out for them if you intend to use
next_lexeme.

6 Dynamic extension of the grammar

6.1 Adding rules

Dynamic changes to the grammar are performed by action code. To add rules to the grammar
from an action code one states the character ‘@’ before the code of the action and uses the parser
commands list (a list of values of type dyp_action, see section 7.2 for more information about it).
The constructor that is used for this purpose is:

| Add_rules of

(rule * ((’token,’obj,’gd,’ld,’l) dypgen_toolbox ->

(’obj list -> ’obj * (’token,’obj,’gd,’ld,’l) dyp_action list))) list

34

Where dypgen_toolbox is the type of the record dyp (see section 7.1), and the type obj is explained
a bit further. To add several rules and their respective actions to the grammar, the action returns
the list of the corresponding couples (rule, action) as argument to the constructor Add_rules

in the list of parser commands. For instance the action may look like:

@{ returned_value, [Add_rules [(rule1,action1);(rule2,action2);(rule3,action3)]] }

The types used to construct rules are:

type ’a nt_prio =

| No_priority

| Eq_priority of ’a

| Less_priority of ’a

| Lesseq_priority of ’a

| Greater_priority of ’a

| Greatereq_priority of ’a

type regexp =

| RE_Char of char

| RE_Char_set of (char * char) list

| RE_Char_set_exclu of (char * char) list

| RE_String of string

| RE_Alt of regexp list

| RE_Seq of regexp list

| RE_Star of regexp

| RE_Plus of regexp

| RE_Option of regexp

| RE_Name of string (* name of a regexp declared with let *)

| RE_Eof_char

type symb =

| Ter of string

| Ter_NL of string

| Non_ter of string * (string nt_prio)

| Non_ter_NL of string * (string nt_prio)

| Regexp of regexp

| Regexp_NL of regexp

type rule_options = No_layout_inside | No_layout_follows

type rule = string * (symb list) * string * (rule_options list)

In the type rule, the first string is the non terminal of the left-hand side of the rule, symb list

is the list of symbols in the right-hand side of the rule, the second string is the name of the pri-
ority that is returned by this rule. If you don’t want your rule to return any particular priority
then use "default_priority". The rule_options list tells whether layout characters are al-
lowed to be matched for this rule inside and after the rule. No_layout_inside is equivalent to

35

the use of the character ‘!’ at the beginning of the right-hand side in the parser definition and
No_layout_follows is equivalent to ‘-’ at the end of the right-hand side. The suffix ‘_NL’ in the
constructors of the type symb tells the parser that the symbol must not be preceded by layout
characters, it amounts to the use of ‘-’ before a symbol in a right-hand side in the parser definition
(see section 5.7 for more information). These types are part of the module Dyp which is not open
by default.

For example the rule expr: LPAREN expr RPAREN is written:

let rule_paren =

("expr",

[Ter "LPAREN"; Non_ter ("expr",No_priority); Ter "RPAREN"],

"default_priority",[])

The rule expr: "(" expr ")" is written:

let rule_paren =

("expr",

[Regexp (RE_String "("); Non_ter ("expr",No_priority); Regexp (RE_String ")")],

"default_priority",[])

The rule expr: expr(<=pp) "+" expr(<pp) pp is written:

let rule_plus =

("expr",

[Non_ter ("expr",Lesseq_priority "pp");

Regexp (RE_String "+");

Non_ter ("expr",Less_priority "pp")],

"default_priority",[])

The type of actions is:

(’token,’obj,’gd,’ld,’l) dypgen_toolbox ->

’obj list ->

’obj * (’token,’obj,’gd,’ld,’l) dyp_action list

For example the action bound to the rule

expr: expr(<=pp) "+" expr(<pp) pp

can be written:

let action_plus _ l =

let x1, x2 = match l with

| [Obj_expr x1;_;Obj_expr x2] -> x1, x2

| _ -> failwith "action_plus"

in

(Obj_expr (x1+x2)), []

The constructor Obj_expr is part of the type obj which is discussed in the following subsection.

36

6.2 The type obj

The type obj is a sum of constructors with each constructor corresponding to a terminal or a non
terminal. For each symbol of name symbol in the grammar, the corresponding constructor of the
type obj is Obj symbol. Obj symbol has an argument if symbol is a non terminal or a token with
argument. The type of this argument is the type of the argument of the corresponding token or
the type of the value returned by the corresponding non terminal.

When you write the function that builds the action associated with a rule added dynamically
to the grammar, you have to use one of these constructors for the result of the action. If the
constructor is not the good one, i.e. the one that is associated with the non terminal in the left-
hand side of the rule, then an exception will be raised when reducing by this rule. This exception
is:

exception Bad_constructor of (string * string * string)

where the first string represents the rule, the second string represents the constructor that was
expected for this left-hand side non terminal and the third string is the name of the constructor
that has been used.

If you want several symbols to have the same constructor then you can use the directive:

%constructor Cons %for symb1 symb2 ...

where Cons is the name of the common constructor you want to assign for all these symbols, and
symb1, symb2 can be either a non terminal (an identifier beginning with a lower case letter) or a
terminal (an identifier beginning with an upper case letter). Of course all these symbols need to
return values of the same type, in particular you can share the same constructor between different
non terminals and tokens associated with one argument (all of them of the same type), but you
cannot share a constructor between tokens without argument and tokens with arguments or non
terminals. Regardless of whether you use polymorphic variants (see below) or not, you should
not write ‘Cons here but just Cons. You can also use the keyword %constructor to declare
constructors that are not used by any token or non terminal in the initial grammar but that
may be used for new non terminals when new rules are added dynamically (see section 6.5). For
instance:

%constructor Cons1 Cons2 Cons3

Note that obj is actually a polymorphic type constructor. The types of the arguments of the
constructors that accept an argument that are not known to dypgen are its type parameters. But
these type parameters are not explicitly written in this manual to avoid clutter. See the next sub-
section for an example of type constructor obj. Note that if your grammar has a lot of symbols,
the maximal number of non-constant constructors (246) may be reached. Then use the option
--pv-obj with dypgen. With this option, dypgen uses polymorphic variants instead of construc-
tors. Another way to avoid reaching the maximum number of constructors is to share constructors
between several symbols, for instance to use a constructor Void for all the tokens that have no
argument. When using polymorphic variants sharing constructor may make the compilation of the
generated code less demanding because it uses fewer polymorphic variants.

In addition to the constructors assigned to terminals and non terminals symbols, the type obj

owns the following constructors:

37

Lexeme_matched of string

It is the constructor for the strings returned by regular expressions. This constructor is present
even if you don’t use dypgen lexer generator. When dypgen is used as the lexer generator there is
also one constructor

Lex_lexer_name

for each auxiliary lexer (where lexer_name is the name of the lexer), and one constructor

Lex_lexer_name_Arg_arg_name

for each parameter of the lexer (where arg_name is the name of the parameter). The user won’t
have to deal with these constructors but you should avoid introducing constructor that begins with
Lex_ or giving a name that contains _Arg_ to a lexer.

The .mli file generated by dypgen includes the declaration of the type obj (when neither
--pv-obj nor --no-obj is used).

6.3 Example

{ open Dyp

let rule_plus = ("expr", [

Non_ter ("expr",No_priority);

Regexp (RE_String "+");

Non_ter ("expr",No_priority)

], "default_priority", true)

(* define the rule: expr: expr "+" expr *)

let action_plus = (fun dyp l ->

let x1,x2 = match l with

| [Obj_expr x1;_;Obj_expr x2] -> x1,x2

| _ -> failwith "action_plus"

in

Obj_expr (x1+x2), [Dont_shift]) }

%start main

%lexer

main lexer =

’ ’ ->

[’0’-’9’]+ -> INT { int_of_string (Dyp.lexeme lexbuf) }

%parser

main: expr "\n" { $1 }

expr:

38

| INT { $1 }

| a expr { $2 }

a: "&" @{ (), [Add_rules [(rule_plus, action_plus)]] }

Now if we parse the following input

& 1 + 2 + 3 + 4

the parser reduces & to a, the action code of this reduction adds the rule expr: expr "+" expr

to the initial grammar which does not contain it. And the action code associated with this rule is
action_plus which is the addition. Then the rest of the input is parsed with this new rule and
the whole string is reduced to the integer 10.

The type constructor obj discussed in the previous subsection is:

type (’a, ’b, ’c, ’d) obj =

Lexeme_matched of string

| Obj_INT of ’a

| Obj___dypgen_layout

| Obj_a of ’b

| Obj_expr of ’c

| Obj_main of ’d

| Dypgen__dummy_obj_cons

Note that with an early action we can use alternatively the following grammar:

main: expr "\n" { $1 }

expr:

| INT { $1 }

| "&" ...@{ (), [Add_rules [(rule_plus, action_plus)]] } expr { $3 }

Now the type constructor obj becomes:

type (’a, ’b, ’c, ’d) obj =

Lexeme_matched of string

| Obj_INT of ’a

| Obj___dypgen_layout

| Obj_dypgen__nt_0 of ’b

| Obj_expr of ’c

| Obj_main of ’d

| Dypgen__dummy_obj_cons

6.4 Scope of the changes

The changes to the grammar introduced by an action do not apply anywhere in the input. When
an action code changes the grammar a reduction occurs and yield a non terminal (the non terminal
a in the previous example). Once this non terminal is itself reduced, the changes to the grammar
are forgotten and the grammar which was used before the changes is used again. The scope of the
changes to the grammar is the same as the scope of local_data.

We add parentheses to the previous example:

39

{

(* same as previous example *)

}

%start main

%lexer /* same as previous example */

%parser

main: expr "\n" { $1 }

expr:

| INT { $1 }

| a expr { $2 }

| "(" expr ")" { $2 }

a: "&" @{ (), [Add_rules [(rule_plus, action_plus)]] }

The input

(& 1 + 2 + 3 + 4)

is correct, but

(& 1 + 2) + 3 + 4

is not and raises Dyp.Syntax_error. In order to reduce (& 1 + 2) the parser reduces & 1 + 2

to a expr and then to expr. At this moment the old grammar applies again and the rule expr:

expr "+" expr does not apply any more. This is why the parser cannot shift + after (& 1 + 2).
In the directory demos/sharp there is an example which is similar to this one.

It is possible to extend the scope of the grammatical changes, but you have to tell it to the
parser. The constructor

Keep_grammar

of the type dyp_action is available to do that. If Dyp.Keep_grammar is returned in the list of
instructions to the parser, then the grammar that was in use when the reduction of the last non
terminal of the right-hand side of the current rule occured is kept instead of being forgotten. Using:

@{ returned_value, [Dyp.Keep_grammar] }

extends the scope of the grammar the same way that

@{ returned_value, [Dyp.Local_data dyp.last_local_data] }

extends the scope of local_data (see section 4.5).

Extensions of the scope of the changes to the grammar are useful when you want to use a
left-recursive rule instead of a right-recursive one. Left-recursive rules are more efficient than
right-recursive ones with a GLR parser driven by an LR(0) automaton, which is currently what

40

dypgen generates. For an example of use of Keep_grammar with a left-recursive rule, see the ex-
ample tinyML.

Using Dyp.Keep_grammar is expensive since it needs to rebuild an automaton. There is an ex-
ception, when the rule is left-recursive then no additional construction of an automaton is needed.

Note that Dyp.Keep_grammar has no effect when the current action itself changes the grammar.

6.5 Adding new non terminals

To add a new non terminal to the grammar just use its string in some new rules and bind this new
non terminal to an existing constructor of the type obj. To do this binding place the following in
the parser commands list:

Bind_to_cons [(nt,cons)]

is used to insert a new non terminal which string is nt and which associated constructor has the
string cons. The string nt can be any string, the string cons must be either:

• A valid constructor of the form Obj_nt where nt is a non terminal which has not been
assigned a different constructor than its default.

• Or a constructor that has been declared with the keyword %constructor and without using
the backquote even if the option --pv-obj is used.

If the non terminal which string is nt is already bound to a constructor then there are two possible
outcomes:

• The string cons is the same as the one that this non terminal is already bound to, then
nothing is changed.

• The string cons is different from the one that this non terminal is already bound to, then
the parser raises:

exception Constructor_mismatch of (string * string)

where the first string is the one representing the constructor that the non terminal was pre-
viously bound to and the second string is cons.

Note that if an action returns Keep_grammar and uses Bind_to_cons binding_list in the parser
commands list then the bindings introduced by Bind_to_cons will not be taken into account.

Note that you cannot define new terminal symbols. If you add a new rule with a token that is
not in the initial grammar then the parser will raise the exception:

exception Undefined_ter of string

41

The string is the name of the undefined token. If you want to extend the lexer then use dypgen as
the lexer generator and use regular expressions in the right hand-side of the new rules that need
the lexer to be extended.

It is not possible to define new named regexp at runtime but it is possible to use the ones
defined statically to build new rules using the constructor RE_Name. If this constructor is used
with a string that does not correspond to an existing named regexp then the exception Not_found

is raised. Therefore it is useful to check whether the string is the name of a named regexp. To do
so it is possible to use the following function.

val is_re_name : (’t,’o,’gd,’ld,’l) parser_pilot -> string -> bool

For instance, the code

if is_re_name dyp.parser_pilot s

then Regexp (RE_Name s)

else failwith "regexp name undefined"

fails when trying to use a string s that does not correspond to an existing named regexp.

Note that you can also include non terminals in the initial grammar without being part of any
rule. To do this use the keyword %non_terminal followed by the names of the non terminals you
want to include, like:

%non_terminal nt1 nt2 nt3

This directive is put in the section after the header, before the grammar.

For a complete example of grammar extension, see appendix C. It describes a small language
that is somewhat extensible.

6.6 Extending dynamically priority data

To make the relation true between priorities, use the constructor Relation of the parser commands
list:

Relation of string list list

For instance the following parser commands list

[Relation [["p1";"p2"];["p3";"p4";"p5"]]]

adds the relations: p1<p2 and p3<p4<p5 to the priority data. (where p3<p4<p5 is transitively
closed, i.e. p3<p5 does also hold)

The scope of the changes to the priority data is the same as the scope of the changes to the
grammar. In particular the parser command Keep_grammar extends this scope the same way it
does for the scope of new rules.

Note that it is not possible to make the relation false between two priorities for which the rela-
tion is true at parsing time. You can see the priorities as the vertices of a graph and the relation

42

as directed edges between these vertices. You can dynamically add new vertices and edges, but
not remove them. Of course when the parsing goes out of the scope of the changes, the priority
data returns to its previous state.

To add a new priority to the grammar just use it in a rule or with Relation.

You can find a very basic example of extension of priority data in the directory calc_ext. This
is the example of a calculator that only has the plus operator and where the times operator can
be added with the use of the character & in the string. Initially the priorities are pi<pp, when the
grammar is extended to include the times operator, the priority data is changed to pi<pt<pp.

7 Parsing control structures

7.1 The record dyp and the type dypgen toolbox

The record dyp is accessible in any action code, its type is dypgen_toolbox, it is defined in the
module Dyp:

type (’token,’obj,’gd,’ld,’lexbuf) dypgen_toolbox = {

parser_pilot : (’token,’obj,’gd,’ld,’lexbuf) parser_pilot;

global_data : ’gd;

local_data : ’ld;

last_local_data : ’ld;

next_lexeme : unit -> string list;

symbol_start : unit -> int;

symbol_start_pos : unit -> Lexing.position;

symbol_end : unit -> int;

symbol_end_pos : unit -> Lexing.position;

rhs_start : int -> int;

rhs_start_pos : int -> Lexing.position;

rhs_end : int -> int;

rhs_end_pos : int -> Lexing.position;

print_state : out_channel -> unit;

print_grammar : out_channel -> unit;

}

Where ’gd and ’ld are replaced by the type for global data and local data chosen by the user (and
infered by Caml), and ’obj is replaced by the type obj discussed in section 6.2, and ’lexbuf is
replaced by the type of the lexer buffer. To know more about the field parser_pilot see section
7.3, and for more information about next_lexeme see section 5.8.

7.2 The parser commands list and the type dyp action

To give instructions to the parser from the user actions one returns a list of values of type
dyp_action, called the parser commands list, along with the returned AST. This list is returned
by the action when the code is preceded by the character ‘@’ and it is returned by the actions
introduced at parsing time.

43

type (’token,’obj,’gd,’ld,’lexbuf) dyp_action =

| Add_rules of

(rule * ((’token,’obj,’gd,’ld,’lexbuf) dypgen_toolbox ->

(’obj list -> ’obj * (’token,’obj,’gd,’ld,’lexbuf) dyp_action list))) list

| Bind_to_cons of (string * string) list

| Dont_shift

| Global_data of ’gd

| Keep_grammar

| Local_data of ’ld

| Next_grammar of out_channel

| Next_state of out_channel

| Parser of (’token,’obj,’gd,’ld,’lexbuf) parser_pilot

| Relation of string list list

Here are the sections where each of these constructors are discussed:

Constructor See section Constructor See section Constructor See section
Add_rules 6.1 Keep_grammar 6.4 Parser 7.4
Bind_to_cons 6.5 Local_data 4 Relation 6.6
Dont_shift 3.4 Next_grammar 9.3
Global_data 4 Next_state 9.3

The type dyp_action is also used with the function update_pp, see section 7.3.

Because of the recursive nature of the types dyp_action and dypgen_toolbox the typechecker
of ocamlc complains in some cases, like when using an early action that returns a parser commands
list (i.e. beginning with ...@{). The error message looks like:

This expression has type

(’a * unit, ’b) obj * (’c, (’d, int) obj, ’e, ’f, ’g) Dyp.dyp_action list

but is here used with type ’a * (’h, ’a, ’i, ’j, ’k) Dyp.dyp_action list

In such cases you will have to use the option -rectypes of ocamlc and use --ocamlc "-rectypes"

with dypgen or the option command (These options are documented in 9.7)

7.3 parser pilot, parse, lexparse and update pp

The record dyp available inside the action code has a field:

parser_pilot : (’token,’obj,’global_data,’local_data,’lexbuf) Dyp.parser_pilot;

that describes the current parser with information such as the current grammar, its corresponding
parse table and the current global and local data. The type is

type (’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot = {

pp_dev : (’token,’obj,’global_data,’local_data,’lexbuf) parsing_device;

pp_par : (’token,’obj,’global_data,’local_data,’lexbuf) parser_parameters;

pp_gd : ’global_data;

pp_ld : ’local_data }

44

The .ml file generated by dypgen defines the value:

val pp : unit -> (’token,’obj,’global_data,’local_data,’lexbuf) Dyp.parser_pilot

which is declared in the .mli generated file. It is defined after the grammar, therefore it is not
available in the header and in the grammar. This value describes the parser defined in the .dyp

file. The global and local data included inside are the values global_data and local_data defined
by the user (or the default otherwise).

The following function is defined in the module Dyp of the library and makes possible to parse
for any non terminal symbol of the grammar when you use dypgen as the lexer generator.

val lexparse :

(’token,’obj,’global_data,’local_data,’obj dyplexbuf) parser_pilot ->

string ->

?global_data:’global_data ->

?local_data:’local_data ->

?match_len:[‘longest|‘shortest] ->

?choose_token:[‘first|‘all] ->

’obj dyplexbuf ->

((’obj * string) list)

If you use an external lexer generator like ocamllex then the corresponding function is:

val parse :

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot ->

string ->

?global_data:’global_data ->

?local_data:’local_data ->

?match_len:[‘longest|‘shortest] ->

?lexpos:(’lexbuf -> (Lexing.position * Lexing.position)) ->

(’lexbuf -> ’token) ->

’lexbuf ->

((’obj * string) list)

For instance the following expression inside a user action:

parse dyp.parser_pilot "expr" lexfun lexbuf

parses with the current grammar and the current global and local data with the lexer lexfun and
the lexer buffer lexbuf and tries to reduce to the non terminal expr. If you want to have access to
your lexer inside the actions, you may put it in global_data or local_data. Assuming you want
to put it in local_data, then when you define local_data in the header you may put a dummy
lexer of the right type:

let local_data = fun _ -> LPAREN

where LPAREN is any token. And when you call the parser, use the label ~local_data: to have
local_data contains your real lexer.

Assuming that a parser is defined in a file named my_parser.dyp then the following expression
in a file different from the parser:

45

parse (My_parser.pp ()) "program" lexfun lexbuf

parses with the grammar defined in my_parser.dyp and the values global_data and local_data

defined by the user. It tries to reduce to the non terminal program.

The non terminal passed as second argument to parse does not need to be declared as a start
non terminal in the .dyp file. Any non terminal of the grammar can be used. The default value
for match_len is ‘longest (see section 9.8 for more information about ‘shortest and ‘longest).
The default value for choose_token is ‘first (see the end of the section 2.1 for more information
about this argument).

The following function is defined in the module Dyp of the library and makes possible to modify
a value of type parser_pilot.

val update_pp :

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot ->

(’token,’obj,’global_data,’local_data,’lexbuf) dyp_action list ->

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot

Note: when you use this function, only the following constructors of the type dyp_action have an
effect on the parser:

Add_rules

Bind_to_cons

Global_data

Local_data

Relation

To know more about the type dyp_action see section 7.2.

7.4 Saving and loading a parser

It is possible to save to a file and load from a file a parser. This may be useful to save the time
of generation of the automaton for an extended grammar. To do this you need to use the field
parser_pilot.pp_dev of the record dyp and the constructor

Parser of (’token,’obj,’global_data,’local_data,’lexbuf) parsing_device

of the parser commands list. The field parser_pilot.pp_dev gives you access to the current parser
and make you able to save it to a file using the Marshal module of the Caml standard library (you
have to use the flag Closures since a value of type parsing_device contains functional values).
To load a parser and use it, you need to return it to the current parser with the constructor Parser
in a parser commands list.
For instance the demo program tinyML could contain the following productions to save and load
the parsing_device.

statements:

| { [] }

| statements statement @{ $2::$1, [Keep_grammar] }

| statements load_statement @{ $2@$1, [Keep_grammar] }

46

| statements "save" STRING<filename> ";" ";" @{

let oc = open_out filename in

Marshal.to_channel oc ($1, dyp.parser_pilot.pp_dev) [Marshal.Closures];

close_out oc;

$1, [Keep_grammar] }

load_statement: "load" STRING<filename> ";" ";"

@{let ic = open_in filename in

let stmt_list, pdev = Marshal.from_channel ic in

close_in ic;

stmt_list, [Parser pdev] }

The files test_list_syntax.tiny and test_load_parser.tiny test this feature. The file
test_list_syntax.tiny is

define

list_contents := expr(x) = List(x,Nil)

and list_contents := expr(x) ";" list_contents(y) = List(x,y)

and expr := "[" "]" = Nil

and expr := "[" list_contents(x) "]" = x

and expr := expr(x) "::" expr(y) = List(x,y)

;;

let rec append arg = match arg with

| ([],list) -> list

| ((head::tail),list) -> (head::(append (tail,list)))

;;

define

expr := expr(x) "@" expr(y) = append (x,y)

;;

save "list_syntax";;

When interpreted it creates a file list_syntax containing a parser for the syntax of tinyML and
an extension parsing the syntax of lists.
The file test_load_parser.tiny is

load "list_syntax";;

let rec reverse l = match l with

| [] -> []

| head::tail -> ((reverse tail)@[head])

;;

reverse [0;1;2;3];;

When interpreted it outputs

47

= List(3,List(2,List(1,List(0,Nil))))

It is possible to save the automaton without functional values and to attach them to the
parsing_device after loading it. To do this, two functions are available:

val function_free_pdev :

(’t,’o,’gd,’ld,’lb) parsing_device -> (’t,’o,’gd,’ld,’lb) parsing_device

val import_functions :

(’t,’o,’gd,’ld,’l) parsing_device ->

(’t,’o,’gd,’ld,’l) parser_pilot ->

(rule * ((’t,’o,’gd,’ld,’l) dypgen_toolbox ->

’o list -> ’o * (’t,’o,’gd,’ld,’l) dyp_action list)) list ->

(’t,’o,’gd,’ld,’l) parsing_device

The function function_free_pdev returns a parsing_device without any functional value. And
import_functions allows to attach them. For instance the demo program tinyML contains the
following productions:

statements:

| { [] }

| statements statement

@{ $2::$1, [Keep_grammar] }

| statements load_statement

@{ $2@$1, [Keep_grammar] }

| statements "save" STRING<filename> ";" ";" @{

let oc = open_out filename in

Marshal.to_channel oc

($1, (snd dyp.global_data), function_free_pdev dyp.parser_pilot.pp_dev)

[];

close_out oc;

$1, [Keep_grammar] }

statement:

/* ... */

| "define" define_cont ";" ";" @{

let bind_cons = List.map (fun (s,_,_) -> (s,"EXPR")) $2 in

Define_syntax,

let gd = (fst dyp.global_data), $2@(snd dyp.global_data) in

[Global_data gd;

Add_rules (List.map (a_define_in dyp) $2); Bind_to_cons bind_cons] }

load_statement: "load" STRING<filename> ";" ";" @{

let ic = open_in filename in

let stmt_list, define_cont, pdev = Marshal.from_channel ic in

close_in ic;

let ral = List.map (a_define_in dyp) define_cont in

let pdev = import_functions pdev dyp.parser_pilot ral in

stmt_list, [Parser pdev] }

48

Here the information about all the grammar rules that have been added to the initial grammar and
the information to build the corresponding user actions are stored in global_data and marshalled
too when saving the parsing_device.

8 Names defined by dypgen

To avoid names conflicts you should not use identifier beginning with __dypgen_ and take into
account the names that are listed in this section. You sould not give your non terminal symbols
names beginning with dypgen__.

8.1 Types and values defined in the .ml file

The following values are available in the code of the parser. They are defined before the header
but after the code introduced by %mltop.

type token =

| TOKEN_1 of t1

| TOKEN_2 of t2

...

The type token is defined only if an external lexer generator is used and the options --pv-token
and --noemit-token-type are not used.

type (’nt1,’nt2,...) obj =

| Obj_TOKEN_1 of t1

| Obj_TOKEN_2 of t2

...

| Obj_non_ter_1 of ’nt1

| Obj_non_ter_2 of ’nt2

...

The type obj is defined only if the options --pv-obj and --no-obj are not used.

val global_data : int ref (* by default, can be defined by the user *)

val local_data : int ref (* by default, can be defined by the user *)

val global_data_equal : ’a -> ’a -> bool (* is (==) by default *)

val local_data_equal : ’a -> ’a -> bool (* is (==) by default *)

val dyp_merge : ’a list -> ’a -> ’a list

val dyp_merge_nt1 : ’a list -> ’a -> ’a list

val dyp_merge_nt2 : ’a list -> ’a -> ’a list

...

val dypgen_lexbuf_position : Lexing.position * Lexing.position

val dypgen_match_length : [‘shortest | ‘longest]

val dypgen_choose_token : [‘first | ‘all]

49

module Dyp_symbols:

sig

val get_token_name : token -> int

val str_token : token -> string

val ter_string_list : (string * token_name) list

end

module Dyp_priority_data:

sig

val relations : string list list

end

In addition the following module names are used:

module Dyp_symbols_array

module Dyp_aux_functions

8.2 Types and values defined in the .mli file

The .mli file generated by dypgen declares automatically the types token when using an exter-
nal lexer generator and obj (if --pv-token or --noemit-token-type is used then token is not
declared, if --pv-obj or --no-obj is used then obj is not declared, see 9.6 for information about
--pv-obj). It then declares the value pp (see section 7.3 for more information about it) and one
function for each entry point of the grammar declared as such with the keyword %start.

The types written by dypgen are extracted as strings from a file ending with .extract_type

created by calling ocamlc -i. As ocamlc -i does not output a compilable file, dypgen does the
following modifications to the strings. Polymorphic variants are fixed: _[>, _[<, [> and [< are
replaced with [. Type variables beginning with ’_ (like ’_a) are replaced with unit. These au-
tomatic modifications may be the cause of puzzling type errors in some cases. Avoid such errors
with type annotations.

You may want to use some options with ocamlc when dypgen calls ocamlc -i, like the paths
where ocamlc must look for modules. Then uses the options --ocamlc or --command documented
in section 9.7.

8.3 Adding code to the .mli file and at the top of the .ml file

The general frame of a .dyp file is:

%mltop { (* optional OCaml code *) }

{ (* optional OCaml code: "the header" *) }

/* parser informations introduced with keywords (priorities, tokens, ...) */

%%

50

/* the grammar */

{ (* optional OCaml code: "the trailer" *) }

%mlitop { (* optional OCaml interface code *) }

%mlimid { (* optional OCaml interface code *) }

%mli { (* optional OCaml interface code *) }

The keyword %mltop { } makes possible to add code to the top of the .ml generated file.
The code inside the braces is copied to the beginning of the .ml file, before the values defined by
dypgen. The keyword %mltop is used first in the parser definition, before the optional header.

The keyword %mlitop { } makes possible to add code to the top of the interface file of the
parser. The code inside the braces is copied to the beginning of the .mli file.

With the keyword %mlimid { } the code inside the braces is copied between the declaration
of type token and the declaration of the entry point functions in the .mli file.

The keyword %mli { } makes possible to add code at the end of the interface file of the parser.
The code inside the braces is appended to the end of the .mli file. The keyword %mli is used at
the end of the parser definition.

Remark: the block %mlitop { } and the trailer make possible to encapsulate the parser defi-
nition in a functor.

8.4 No generation of the .mli file and other options

With the option --no-mli dypgen does not generate a .mli file.

The option --noemit-token-type prevents dypgen from writing the type token in the gener-
ated code. This is useful when you want to define this type in another file.

The option --no-pp prevents dypgen from declaring pp in the .mli file.

The option --no-obj prevents dypgen from declaring the type obj in the .mli file (it has no
effect if pp is declared).

8.5 Defining the token type in a separate file

To do this, use the option --noemit-token-type when calling dypgen, and do the following:
Supposing your parser file is parser.dyp and your token type is the type t defined in the file
token.ml, put this at the beginning of parser.dyp:

%mltop{

open Token

type token = Token.t

}

51

and put this at the end of parser.dyp:

%mlitop{

type token = Token.t

}

8.6 The module Dyp of the library

Names defined in the module Dyp are listed here:

val dypgen_verbose : int ref

type ’a nt_prio =

| No_priority

| Eq_priority of ’a

| Less_priority of ’a

| Lesseq_priority of ’a

| Greater_priority of ’a

| Greatereq_priority of ’a

type regexp =

| RE_Char of char

| RE_Char_set of (char * char) list

| RE_Char_set_exclu of (char * char) list

| RE_String of string

| RE_Alt of regexp list

| RE_Seq of regexp list

| RE_Star of regexp

| RE_Plus of regexp

| RE_Option of regexp

| RE_Name of string (* name of a regexp declared with let *)

| RE_Eof_char

type symb =

| Ter of string

| Non_ter of string * (string nt_prio)

| Regexp of regexp

| Ter_NL of string

| Non_ter_NL of string * (string nt_prio)

| Regexp_NL of regexp

type rule_options = No_layout_inside | No_layout_follows

type rule = string * (symb list) * string * rule_options list

type nt_cons_map

type (’obj,’gd,’ld) merge_function =

(’obj * ’gd * ’ld) list -> (’obj list * ’gd * ’ld)

52

type debug_infos = {

prt_state : out_channel -> unit;

prt_grammar : out_channel -> unit; }

type (’t,’o,’gd,’ld,’l) action =

Dypgen_action of (...)

and (’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot

type (’token,’obj,’gd,’ld,’l) dypgen_toolbox = {

parser_pilot : (’token,’obj,’gd,’ld,’l) parser_pilot;

global_data : ’gd;

local_data : ’ld;

last_local_data : ’ld;

next_lexeme : unit -> string list;

symbol_start : unit -> int;

symbol_start_pos : unit -> Lexing.position;

symbol_end : unit -> int;

symbol_end_pos : unit -> Lexing.position;

rhs_start : int -> int;

rhs_start_pos : int -> Lexing.position;

rhs_end : int -> int;

rhs_end_pos : int -> Lexing.position;

print_state : out_channel -> unit;

print_grammar : out_channel -> unit;

}

type (’token,’obj,’gd,’ld,’l) dyp_action =

| Add_rules of

(rule * ((’token,’obj,’gd,’ld,’l) dypgen_toolbox ->

(’obj list -> ’obj * (’token,’obj,’gd,’ld,’l) dyp_action list))) list

| Bind_to_cons of (string * string) list

| Global_data of ’gd

| Keep_grammar

| Local_data of ’ld

| Next_grammar of out_channel

| Next_state of out_channel

| Relation of string list list

| Dont_shift

exception Giveup

exception Undefined_nt of string

exception Undefined_ter of string

exception Bad_constructor of (string * string * string)

exception Constructor_mismatch of (string * string)

exception Syntax_error

val keep_all : (’obj,’gd,’ld) merge_function

53

val keep_one : (’obj,’gd,’ld) merge_function

val dummy_lexbuf_position : ’a -> (Lexing.position * Lexing.position)

module Tools

val print_regexp : regexp -> string

type ’obj dyplexbuf

val lexeme : ’obj dyplexbuf -> string

val lexeme_char : ’obj dyplexbuf -> int -> char

val lexeme_start : ’obj dyplexbuf -> int

val lexeme_end : ’obj dyplexbuf -> int

val lexeme_start_p : ’obj dyplexbuf -> Lexing.position

val lexeme_end_p : ’obj dyplexbuf -> Lexing.position

val flush_input : ’obj dyplexbuf -> unit

val from_string :

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot ->

string ->

’obj dyplexbuf

val from_channel :

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot ->

in_channel ->

’obj dyplexbuf

val from_function :

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot ->

(string -> int -> int) ->

’obj dyplexbuf

val dyplex_lexbuf_position :

’obj dyplexbuf -> (Lexing.position * Lexing.position)

val std_lexbuf : ’obj dyplexbuf -> Lexing.lexbuf

val set_newline : ’obj dyplexbuf -> unit

val set_fname : ’obj dyplexbuf -> string -> unit

val make_parser

val update_pp :

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot ->

(’token,’obj,’global_data,’local_data,’lexbuf) dyp_action list ->

(’token,’obj,’global_data,’local_data,’lexbuf) parser_pilot

val lex :

54

string -> (* name of the auxiliary lexer that is called *)

’obj list ->

’obj dyplexbuf ->

’obj

val parse :

(’token, ’obj,’global_data,’local_data,’lexbuf) parser_pilot ->

string ->

?global_data:’global_data ->

?local_data:’local_data ->

?match_len:[‘longest|‘shortest] ->

?lexpos:(’lexbuf -> (Lexing.position * Lexing.position)) ->

(’lexbuf -> ’token) ->

’lexbuf ->

((’obj * string) list)

val lexparse :

(’token, ’obj,’global_data,’local_data,’obj dyplexbuf) parser_pilot ->

string ->

?global_data:’global_data ->

?local_data:’local_data ->

?match_len:[‘longest|‘shortest] ->

?choose_token:[‘first|‘all] ->

’obj dyplexbuf ->

((’obj * string) list)

val log_channel : out_channel ref

val function_free_pdev :

(’t,’o,’gd,’ld,’lb) parsing_device -> (’t,’o,’gd,’ld,’lb) parsing_device

val import_functions :

(’t,’o,’gd,’ld,’l) parsing_device ->

(’t,’o,’gd,’ld,’l) parser_pilot ->

(rule * ((’t,’o,’gd,’ld,’l) dypgen_toolbox ->

’o list -> ’o * (’t,’o,’gd,’ld,’l) dyp_action list)) list ->

(’t,’o,’gd,’ld,’l) parsing_device

val is_re_name : (’t,’o,’gd,’ld,’l) parser_pilot -> string -> bool

val version : string

55

9 Other features

9.1 Preprocessing with cpp

dypgen is compatible with the C preprocessor. The option --cpp makes dypgen call cpp on the
input file before processing it.

This allows to have the grammar definition spread over several files and to have some form of
parameterization for the rules via the macros.

Here is an example with the calculator. The file calc_parser.dyp:

%start main

%relation pi<pt<pp

%layout [’ ’ ’\t’]

%parser

main: expr "\n" { $1 }

#include "expr.dyp"

The file expr.dyp:

#define INFIX(op,p) expr(<=p) #op expr(<p) { $1 op $3 } p

expr:

| [’0’-’9’]+ { int_of_string $1 } pi

| "-" expr(=pi) { -$2 } pi

| "(" expr ")" { $2 } pi

| INFIX(+,pp)

| INFIX(-,pp)

| INFIX(*,pt)

| INFIX(/,pt)

The option --cpp-options "options" allows to make dypgen pass some options to cpp. It is
useful to pass the flag -w to cpp to avoid the warning messages. --cpp is not needed when using
--cpp-options.

9.2 Generated documentation of the grammar

A quick and ugly perl script to generate a BNF documentation for your grammar is provided with
dypgen. This script is not guaranteed to generate anything of interest but it works as a proof of
concept. The grammar generated in this way is more readable than the original dypgen file, and
since a lot of conflict resolving can be done inside the actions, the grammar is usually much more

56

concise than a corresponding Ocamlyacc grammar. The generated file can thus be used as such in
the documentation.

You invoke this script by the following command:

dyp2gram.pl path_to/parser.dyp path_to/parser.txt

The file parser.txt does not contain the OCaml parts of the file parser.dyp (action, preamble,
etc). Everything else is included without changes except for the following rules:

• The comments starting with /*-- are removed. Other dypgen comments are kept. Remark:
the OCaml comments are removed together with all OCaml code.

• If a %token line is annotated with a comment like /* -> ’xxxxx’ */ then, in every action,
the terminal is replaced by the provided string xxxxx and the %token line is removed. This
allows to replace PLUS by +, removing the need for a separate documentation for the lexer.

• If a %token line is annotated with a comment like /*:= ’xxxxx’ -> ’yyyyy’ */ then the
same as above applies, but the %token line is not removed and the comment is just replaced
by the given definition “:= xxxxxx”. This allows to put the definition of terminal like IDENT,
INT, . . . inside the generated file.

• If a %token line is annotated with a comment like /*:= ’xxxxx’ */, the %token line is kept,
but no substitution is performed.

• All other %token lines are kept unchanged

When a rule can parse the empty stream, it disappears because the action disappears. It is
thus a good idea to put a comment like in

/*

* telescopes: lists of (typed) identifiers

*/

telescope:

/* possibly empty */

{ [] }

| argument telescope

{ $1::$2 }

As an example, look at the grammar text file generated from the dypgen parser for tinyML_ulex
(in the demo directory). . .

9.3 Information about the parsing

The user can assign the following reference that is part of the module Dyp:

val dypgen_verbose: int ref

57

in the header of the parser definition. The value 1 makes the parser print information about
dynamically built automata on the standard output. The value 2 adds the following information:
number of reductions performed while parsing and the size of the graph-structured stack of the
parser. Any value >2 makes the parser logs information in a file about the parsing which are useful
for debugging dypgen but unlikely to be useful for the user. Setting a value >2 currently breaks
re-entrancy.

The following functions may be useful for debugging purpose:

dyp.print_state out_channel;

prints the current state of the automaton on out_channel.

dyp.print_grammar out_channel;

prints the current grammar on out_channel.

Next_state of out_channel

is a constructor of the type dyp_action that makes possible to print the next state of the automaton
(the one where the parser goes after the current reduction). Use it in your action like:

@{ returned_value, [Dyp.Next_state channel] }

Next_grammar of out_channel

is a constructor of the type dyp_action that makes possible to print the grammar after the current
reduction (and possible changes). Use it in your action like:

@{ returned_value, [Dyp.Next_grammar channel] }

If the option --merge-warning is used then a warning is issued on the standard output each
time a merge happens. If the lexbuf structure is updated by user actions in the lexer then the
beginning and the end of the part of the input is given.

9.4 Warnings

Dypgen issues warnings at compile time in the following situations:

• When a non terminal symbol is only in right-hand side and not in a left-hand side and
inversely (except for start symbols).

• When a lexer name contains the string ‘_Arg_’.

• When a priority is not declared.

In addition dypgen issues warning at run time when a merge is done if the option --merge-warning

is used.
Compile time warnings become failing errors when using the command option --Werror.

58

9.5 Error

When the parser is stuck in a situation where it cannot reduce and cannot shift but had not re-
duced to the start symbol, it raises the exception Dyp.Syntax_error.

When there is in the grammar a non terminal that is in a right-hand side but never in a
left-hand side (i.e. it is never defined) then the following exception is raised by the parser:

exception Undefined_nt of string

where the string is the name of this non terminal. The option --no-undef-nt prevents this
exception from being raised.

9.6 Maximum number of constructors and using polymorphic variants

If you have a lot of tokens or non terminals then you may reach the maximum number of non-
constant constructors. To solve this problem you can use the options --pv-token and --pv-obj.
With --pv-token, the type token is a sum of polymorphic variants, and with --pv-obj the type
constructor obj uses polymorphic variants.

9.7 Command-line options for ocamlc and include paths

In order to know some types, dypgen calls:

ocamlc -i parser.temp.ml > parser.extract_type

if one assume that parser.dyp is the input file of dypgen. If parser.ml needs some command-line
options to be compiled, then you can pass them to ocamlc with the option --ocamlc string of options .
For instance if you need the inlcude path ../dypgen/dyplib and the option -rectypes you can
call dypgen with:

dypgen --ocamlc "-I ../dypgen/dyplib -rectypes" parser.dyp

Some type errors involving the type dyp_action are solved by using --ocamlc "-rectypes"

with dypgen (see section 7.2).

Alternatively, instead of the option --ocamlc, you can use the option --command which lets
you state a complete command to produce the file myparser.extract_type (where myparser.dyp
is the parser definition file). For instance you may use:

dypgen --command "ocamlfind ocamlc -package mypackage -i parser.temp.ml > \

parser.extract_type" parser.dyp

And then dypgen uses the command

ocamlfind ocamlc -package mypackage -i parser.temp.ml > parser.extract_type

to generate the file parser.extract_type.

59

9.8 Longest and shortest match for the parser

The functions named after entry points of the grammar that are generated by dypgen match the
shortest part of the input that can be reduced to the entry point. The user can make them match
the longest by stating the following line in the header:

let dypgen_match_length = ‘longest

Note that by default the function parse of the module Dyp match the longest string. You can
make it match the shortest using the optional argument ~match_len:‘shortest.

If you use Dyp.keep_all as merge function to keep all the parse trees, then you will get all
the parse trees but for the same part of the input. Either the one with the shortest or the longest
possible length. If you need a parser that collects several interpretations that span different lengths
of the input send me an email.

Off course if your grammar makes matching the end of file mandatory then ‘shortest and
‘longest have the same effect. It makes a difference, for example, with interactive use, like in the
demo program calc.

Note: dypgen_match_length has no effect on the length of the matching of the lexer, included
dypgen own lexer which always selects the longest match.

9.9 Building with ocamlbuild

Here is a rule that can be used with ocamlbuild:

rule "dypgen"

~tags:["dypgen"]

~prods:["%.ml";]

~deps:["%.dyp"]

begin fun env _ ->

let dyp = env "%.dyp" in

Cmd(S[A"dypgen"; A"--no-mli"; Px dyp])

end;

10 Demonstration programs

The directory demos contains a few small programs that illustrate the use of dypgen.

calc is a simple calculator that uses priorities. It does not use dynamic change of the grammar.
calc_pattern is the same calculator but the parser definition uses pattern matching of symbols
(see section 5.2), calc_nested uses nested rules, calc_ocamllex uses ocamllex as lexer generator
and calc_ext is an example of extending the grammar and the priority data.

demo is the example of appendix C, demo_ocamllex is (almost) the same but uses ocamllex as
lexer generator.

60

forest is an example of how to use the function dyp_merge to yield a parse forest.

global_data and local_data are examples of using global_data and local_data.
local_data_early_action is the same as local_data except that it uses an early action.

merge_times_plus is an example of using a merge function to enforce the precedence of the
multiplication over the addition.

position is a small example using the functions dyp.symbol_start, dyp.symbol_end, . . . which
return the position of a part of the input which is reduced to a given non terminal. position_ocamllex
uses ocamllex, position_token_list also uses ocamllex but it makes a list of tokens first and
then parses this list.

sharp is a very basic demonstration of adding a rule and replacing it by another. When en-
tering &+ the user adds a rule which makes the character # like a + and entering &* makes the
character # like a *.

tinyML is a very limited interpreted language which includes integers, tuples, constructors à la
Caml, some basic pattern matching and recursive functions with one argument. It also includes
a construct define ... in which makes possible to extend somewhat the syntax of the language
by defining macros. This construct allows to add several rules at the same time as opposed to the
construct define ... in of demo which can only add one rule at a time. A few input examples
are included in the directory tinyML. To interpret them with tinyML do: ./tinyML test_*.tiny

where * is append, add_at_end, reverse or comb.

tinyML_ulex is an example of how to use ulex as a lexer before parsing with dypgen. The
makefile requires findlib. Note that this example does not use the possibilities of UTF, it is just
an example of how to use ulex with dypgen. The language of tinyML_ulex is smaller than that
of tinyML you can only use the following characters as tokens [,], |, ::, ;, <, >, @.

A Acknowledgements

Christophe Raffalli: ideas for self-extensibility and disambiguation with the system of priorities
and the relation between priorities. Dypgen began as a school work supervised by Christophe
Raffalli in 2005. Pierre Hyvernat made the documentation generation script.

The primary goal of dypgen is to be a convenient and useful tool for OCaml developers. To
achieve this, dypgen introduces new ideas as well as gathers and implements other ideas found in
other projects.

Previous versions of dypgen used Martin Bravenboer and Eelco Visser algorithm of parse table
composition, adapted to handle dypgen’s system of priorities and local extensibility. (it is not used
anymore in this version of dypgen instead an algorithm that computes a new LR(0) table from
scratch is used, which is easier for me to maintain)

61

[1] Martin Bravenboer and Eelco Visser, Parse Table Composition: Separate Compilation and
Binary Extensibility of Grammars, 2007.

http://www.stratego-language.org/Stratego/ParseTableComposition

The idea of merge functions as well as some ideas for the GLR algorithm are borrowed from
the following technical report about the parser generator Elkhound from Scott McPeak:

[2] Scott McPeak. Elkhound: A fast, efficient GLR parser generator. Technical Report CSD-
02-1214, University of California, Berkeley, December 2002.

http://www.cs.berkeley.edu/s̃mcpeak/elkhound

B Migration from ocamlyacc

dypgen takes a file ending with .dyp as input and generates a .ml file and a .mli file. The frame
of an input file for dypgen is somewhat similar to an input file for ocamlyacc. The syntax differs
in the following points:

• The header and trailer codes are placed between braces {} (instead of %{%} for the header
in ocamlyacc).

• The keywords %right, %left and %nonassoc do not exist, precedence and associativity
assigned to symbol is not implemented yet. Ambiguities are managed by other means.

• The entry points are declared with their type like: %start <int> main, with one keyword
%start for each entry point. The type is not mandatory.

• When tokens are declared the type statement only applies to the following token and a type
statement can be stated anywhere on a line beginning with %token, provided it is followed
by a token name. For instance:
%token BAR <string> UIDENT COMMA <string> LIDENT COLON

is the declaration of BAR, COMMA and COLON as tokens with 0 argument and UIDENT and
LIDENT as tokens with a string as argument. Tokens do not need to be declared when using
dypgen’s lexer generator.

• There is no special symbol error for rules.

• There is no ‘;’ between rules.

• To avoid identifier collision identifiers beginning with __dypgen should not be used and the
name of your non terminals should not begin with dypgen__.

• The parser must be linked against the library dyp.cma (or dyp.cmxa) which is found in the
directory dyplib.

62

C A complete example of grammar extension

The following example is implemented in the directory demos/demo. It is a small language with
integers, pairs, constructors and variable names. The program parses the input and then prints it.
If one enters the input List(1,List(2,Nil)) the program outputs = List(1,List(2,Nil)).
The language is somewhat extensible, with the following construction: define lhs:= rhs =

expression in where lhs is the left-hand side non terminal of the rule the user wants to add,
rhs is the right hand side of this new rule, expression is the expression which will be yielded
when a reduction by this new rule occurs. Here is an example of introduction of a specific syntax
for lists:

define list_contents := expr(x) = List(x,Nil) in

define list_contents := expr(x) ";" list_contents(y) = List(x,y) in

define expr := "[" "]" = Nil in

define expr := "[" list_contents(x) "]" = x in

define expr := expr(x) "::" expr(y) = List(x,y) in

[1;2;3]

The output is

= List(1,List(2,List(3,Nil)))

The example is made of 3 files: parse tree.ml, parser.dyp and demo.ml.

(* parse_tree.ml *)

type expr =

| Lident of string

| Int of int

| Pair of (expr * expr)

| Cons of string * (int * (expr list))

type rhs = Token of string | Nt of (string * string)

let rec str_expr exp = match exp with

| Int i -> string_of_int i

| Pair (a,b) -> "("^(str_expr a)^","^(str_expr b)^")"

| Cons (cons,(0,_)) -> cons

| Cons (cons,(1,[o])) ->

cons^"("^(str_expr o)^")"

| Cons (cons,(2,[o1;o2])) ->

cons^"("^(str_expr o1)^","^(str_expr o2)^")"

| Lident x -> x

| _ -> failwith "str_expr"

module String_map = Map.Make(String)

let rec substitute env expr = match expr with

| Int i -> Int i

63

| Lident s ->

begin try String_map.find s env

with Not_found -> Lident s end

| Pair (a,b) -> Pair (substitute env a,substitute env b)

| Cons (c,(n,l)) ->

Cons (c,(n,(List.map (substitute env) l)))

This file declares the two types associated with the two non terminals expr and rhs. str expr

prints expressions and substitute env expr substitutes in expr the variables names by the ex-
pressions which they are bound to in env if they are present in env. This is used in the parser to
define the action associated with a new rule.

/* parser.dyp */

{ open Parse_tree

open Dyp

let string_buf = Buffer.create 10

let a_define_in dyp (s,ol,e) =

let f o =

match o with

| Nt (s,_) -> Non_ter (s,No_priority)

| Token s -> Regexp (RE_String s)

in

let rule = s,(List.map f ol),"default_priority",[] in

let action = (fun _ avl ->

let f2 env o av = match o with

| Nt (_,var_name) -> String_map.add var_name av env

| _ -> env

in

let f3 av = match av with

| Obj_expr exp -> exp

| _ -> Int 0

in

let avl = List.map f3 avl in

let env = List.fold_left2 f2 String_map.empty ol avl in

Obj_expr (substitute env e), [])

in rule, action

}

%start main

%lexer

let newline = (’\010’ | ’\013’ | "\013\010")

let blank = [’ ’ ’\009’ ’\012’]

64

let lowercase = [’a’-’z’ ’\223’-’\246’ ’\248’-’\255’ ’_’]

let uppercase = [’A’-’Z’ ’\192’-’\214’ ’\216’-’\222’]

let identchar =

[’A’-’Z’ ’a’-’z’ ’_’ ’\192’-’\214’ ’\216’-’\246’ ’\248’-’\255’ ’\’’ ’0’-’9’]

rule string = parse

| ’"’ { () }

| _ { Buffer.add_string string_buf (Dyp.lexeme lexbuf);

string lexbuf }

main lexer =

newline | blank + ->

lowercase identchar * -> LIDENT { Dyp.lexeme lexbuf }

uppercase identchar * -> UIDENT { Dyp.lexeme lexbuf }

’"’ -> STRING { Buffer.clear string_buf;

string lexbuf;

Buffer.contents string_buf }

%parser

main : expr eof { $1 }

expr :

| [’0’-’9’]+ { Int (int_of_string $1) }

| "(" expr "," expr ")" { Pair ($2,$4) }

| UIDENT expr

{ match $2 with

| Pair (a,b) -> Cons ($1,(2,[a;b]))

| exp -> Cons ($1,(1,[exp])) }

| UIDENT { Cons ($1,(0,[])) }

| LIDENT { Lident $1 }

| define_in expr { $2 }

define_in :

| "define" LIDENT ":=" rhs "=" expr "in"

@{ (), [Add_rules [a_define_in dyp ($2,$4,$6)];

Bind_to_cons [$2,"Obj_expr"]] }

rhs :

| LIDENT "(" LIDENT ")" { [Nt ($1,$3)] }

| STRING { [Token $1] }

| LIDENT "(" LIDENT ")" rhs { (Nt ($1,$3))::$5 }

| STRING rhs { (Token $1)::$2 }

This file contains the definitions of the parser and the lexer.
The reduction by the rule:

65

define_in: "define" LIDENT ":=" rhs "=" expr "in"

introduces a new rule. The string returned by LIDENT (i.e. $2) is the name of the non terminal of
the left-hand side. The function a_define_in is called. It returns a rule and an action. The new
rule is made of four values:

• The non terminal of the left-hand side, that is the string s.

• The list of symbols of the right-hand side of the rule, that is the result of List.map f ol.

• The priority returned by the rule, which is denoted by the string of its name, here it is
"default_priority".

• A boolean that tells whether layout characters are allowed to be read in the part of the input
that is reduced when applying the rule. This is only relevant when using dypgen own lexer
(which is the case here).

For each non terminal in the right-hand side rhs, a variable name follows in parentheses. The
action code of the new rule is defined as returning the expression which follows the second = in
which some variable names are substituted by some expressions. The variable names which appear
in the right-hand side of the rule are substituted by the results yielded by the corresponding non
terminals.

(* demo.ml *)

open Parse_tree

let string_ref = ref ""

let process_argument s =

if s = "" then raise (Arg.Bad "missing input file name")

else string_ref := s

let _ = Arg.parse [] process_argument "usage: demo file_name"

let _ = if !string_ref = "" then

(print_string "usage: demo file_name\n";

exit 0)

let input_file = !string_ref

let lexbuf = Dyp.from_channel (Parser.pp ()) (Pervasives.open_in input_file)

let prog = fst (List.hd (Parser.main lexbuf))

let s = str_expr prog

let () = Printf.printf "= %s\n" s

This is the main implementation file, it opens the file given as argument, parses it and prints
the corresponding expression.

All the files of this example are available in the directory demos/demo. To test it with a test
input do:

./demo test1.tiny

66

	Introduction to dypgen
	The calculator example
	BNF grammars
	Priorities
	Semantical actions
	The calculator with dypgen lexer generator

	Lexer generators
	dypgen lexer generator
	External lexer generators
	Using a lexer generator different from ocamllex or dypgen
	Position of the lexer
	Extending the lexer

	Resolving ambiguities
	Priorities with relations
	Merge functions and keeping several trees
	Specific merge functions
	Example
	Global and generic merge functions
	Merging on different global and local data
	Self-derivable non terminals and empty reductions
	Merge warning

	Giving up a reduction
	Preventing a shift

	Auxiliary data
	The fields global_data and local_data
	Example with local_data
	Equality between data
	Example with global_data
	Extending the scope of local_data

	User actions and rules
	Several actions for a rule
	Pattern matching on symbols
	Nested rules
	Inherited attributes
	Early actions
	The operators *, + and ?
	Preventing layout characters to be matched with ! and -
	Knowing the next lexeme in a user action

	Dynamic extension of the grammar
	Adding rules
	The type obj
	Example
	Scope of the changes
	Adding new non terminals
	Extending dynamically priority data

	Parsing control structures
	The record dyp and the type dypgen_toolbox
	The parser commands list and the type dyp_action
	parser_pilot, parse, lexparse and update_pp
	Saving and loading a parser

	Names defined by dypgen
	Types and values defined in the .ml file
	Types and values defined in the .mli file
	Adding code to the .mli file and at the top of the .ml file
	No generation of the .mli file and other options
	Defining the token type in a separate file
	The module Dyp of the library

	Other features
	Preprocessing with cpp
	Generated documentation of the grammar
	Information about the parsing
	Warnings
	Error
	Maximum number of constructors and using polymorphic variants
	Command-line options for ocamlc and include paths
	Longest and shortest match for the parser
	Building with ocamlbuild

	Demonstration programs
	Acknowledgements
	Migration from ocamlyacc
	A complete example of grammar extension

